Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Sep 27;7(39):64431-64446.
doi: 10.18632/oncotarget.7043.

Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer

Affiliations
Review

Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer

Debora de Melo Gagliato et al. Oncotarget. .

Abstract

Breast Cancer (BC) is a highly prevalent disease. A woman living in the United States has a 12.3% lifetime risk of being diagnosed with breast cancer [1]. It is the most common female cancer and the second most common cause of cancer death in women [2]. Of note, amplification or overexpression of Human Epidermal Receptor 2 (HER2) oncogene is present in approximately 18 to 20% of primary invasive breast cancers, and until personalized therapy became available for this specific BC subtype, the worst rates of Overall Survival (OS) and Recurrence-Free Survival (RFS) were observed in the HER2+ BC cohort, compared to all other types, including triple negative BC (TNBC) [3].HER2 is a member of the epidermal growth factor receptor (EGFR) family. Other family members include EGFR or HER1, HER3 and HER4. HER2 can form heterodimers with any of the other three receptors, and is considered to be the preferred dimerization partner of the other HER or ErbB receptors [4]. Phosphorylation of tyrosine residues within the cytoplasmic domain is the result of receptor dimerization and culminates into initiation of a variety of signalling pathways involved in cellular proliferation, transcription, motility and apoptosis inhibition [5].In addition to being an important prognostic factor in women diagnosed with BC, HER2 overexpression also identifies those patients who benefit from treatment with agents that target HER2, such as trastuzumab, pertuzumab, trastuzumab emtansine (T-DM1) and small molecules tyrosine kinase inhibitors of HER2 [6, 11, 127].In fact, trastuzumab altered the natural history of patients diagnosed with HER2+ BC, both in early and metastatic disease setting, in a major way [8-10]. Nevertheless, there are many women that will eventually develop metastatic disease, despite being treated with anti-HER2 therapy in the early disease setting. Moreover, advanced tumors may reach a point where no anti-HER2 treatment will achieve disease control, including recently approved drugs, such as T-DM1.This review paper will concentrate on major biological pathways that ultimately lead to resistance to anti-HER2 therapies in BC, summarizing their mechanisms. Strategies to overcome this resistance, and the rationale involved in each tactics to revert this scenario will be presented to the reader.

Keywords: HER2 disease; anti-HER2 therapy; breast cancer; resistance to treatment; trastuzumab.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTERESTS

Dr. Debora de Melo Gagliato, Dr. Denis Leonardo Fontes Jardim and Dr. Gabriel Hortobagyi report no conflict of interest. Mario Marchesi works for Roche Pharmaceuticals. The content of this review was not influenced by this relationship.

Figures

Figure 1
Figure 1. HER2 dimerizes with other partners from the HER2 family, activating intracellular proliferative pathways
Also, p95HER2/611CTF has intrinsic kinase activity, lacking the extracellular domain and the binding site of trastuzumab (T), enabling activated signaling, despite the presence of trastuzumab. Upon activation of proliferative pathways, such as PI3K/AKT/mTOR, the cell undergoes proliferation. Trastuzumab blocks HER2 dimerization and phosphorylation, but p95HER2/611CTF might still phosphorylate and enable cancer cell proliferation. In contrast, treatment with doxorubicin (D) and trastuzumab induces apoptosis more efficiently in p95HER2/611CTF-positive cells and, destabilizing phospho-HER2 and stabilizing HER2 in p95HER2/611CTF-positive cells. Therefore, cells are sensitized to trastuzumab and suffer apoptosis through trastuzumab therapy.

Similar articles

Cited by

References

    1. DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64(1):52–62. - PubMed
    1. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, Lin C, Leach C, Cannady RS, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62(4):220–241. - PubMed
    1. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–182. - PubMed
    1. Olayioye MA. Update on HER-2 as a target for cancer therapy: intracellular signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res. 2001;3(6):385–389. - PMC - PubMed
    1. Rubin I, Yarden Y. The basic biology of HER2. Ann Oncol. 2001;12(Suppl 1):S3–8. - PubMed

MeSH terms