pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens
- PMID: 26825632
- PMCID: PMC4733280
- DOI: 10.1186/s13073-016-0264-5
pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens
Abstract
Cancer immunotherapy has gained significant momentum from recent clinical successes of checkpoint blockade inhibition. Massively parallel sequence analysis suggests a connection between mutational load and response to this class of therapy. Methods to identify which tumor-specific mutant peptides (neoantigens) can elicit anti-tumor T cell immunity are needed to improve predictions of checkpoint therapy response and to identify targets for vaccines and adoptive T cell therapies. Here, we present a flexible, streamlined computational workflow for identification of personalized Variant Antigens by Cancer Sequencing (pVAC-Seq) that integrates tumor mutation and expression data (DNA- and RNA-Seq). pVAC-Seq is available at https://github.com/griffithlab/pVAC-Seq .
Figures



Similar articles
-
Population-level distribution and putative immunogenicity of cancer neoepitopes.BMC Cancer. 2018 Apr 13;18(1):414. doi: 10.1186/s12885-018-4325-6. BMC Cancer. 2018. PMID: 29653567 Free PMC article.
-
ASNEO: Identification of personalized alternative splicing based neoantigens with RNA-seq.Aging (Albany NY). 2020 Jul 22;12(14):14633-14648. doi: 10.18632/aging.103516. Epub 2020 Jul 22. Aging (Albany NY). 2020. PMID: 32697765 Free PMC article.
-
pVACtools: A Computational Toolkit to Identify and Visualize Cancer Neoantigens.Cancer Immunol Res. 2020 Mar;8(3):409-420. doi: 10.1158/2326-6066.CIR-19-0401. Epub 2020 Jan 6. Cancer Immunol Res. 2020. PMID: 31907209 Free PMC article.
-
Toward in silico Identification of Tumor Neoantigens in Immunotherapy.Trends Mol Med. 2019 Nov;25(11):980-992. doi: 10.1016/j.molmed.2019.08.001. Epub 2019 Sep 4. Trends Mol Med. 2019. PMID: 31494024 Review.
-
Cancer Neoantigens and Applications for Immunotherapy.Clin Cancer Res. 2016 Feb 15;22(4):807-12. doi: 10.1158/1078-0432.CCR-14-3175. Epub 2015 Oct 29. Clin Cancer Res. 2016. PMID: 26515495 Review.
Cited by
-
NeoDesign: a computational tool for optimal selection of polyvalent neoantigen combinations.Bioinformatics. 2024 Oct 1;40(10):btae585. doi: 10.1093/bioinformatics/btae585. Bioinformatics. 2024. PMID: 39331572 Free PMC article.
-
DeepHLApan: A Deep Learning Approach for Neoantigen Prediction Considering Both HLA-Peptide Binding and Immunogenicity.Front Immunol. 2019 Nov 1;10:2559. doi: 10.3389/fimmu.2019.02559. eCollection 2019. Front Immunol. 2019. PMID: 31736974 Free PMC article.
-
Neoantigen Dissimilarity to the Self-Proteome Predicts Immunogenicity and Response to Immune Checkpoint Blockade.Cell Syst. 2019 Oct 23;9(4):375-382.e4. doi: 10.1016/j.cels.2019.08.009. Epub 2019 Oct 9. Cell Syst. 2019. PMID: 31606370 Free PMC article.
-
Heterogeneity and evolution of tumour immune microenvironment in metastatic gastroesophageal adenocarcinoma.Gastric Cancer. 2022 Nov;25(6):1017-1030. doi: 10.1007/s10120-022-01324-7. Epub 2022 Jul 29. Gastric Cancer. 2022. PMID: 35904677 Free PMC article.
-
Detection of neoantigen-specific T cells following a personalized vaccine in a patient with glioblastoma.Oncoimmunology. 2019 Jan 25;8(4):e1561106. doi: 10.1080/2162402X.2018.1561106. eCollection 2019. Oncoimmunology. 2019. PMID: 30906654 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources