Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May;95(5):574-9.
doi: 10.1177/0022034516629400. Epub 2016 Jan 29.

Laboratory Studies of Nonlinear Optical Signals for Caries Detection

Affiliations

Laboratory Studies of Nonlinear Optical Signals for Caries Detection

E Terrer et al. J Dent Res. 2016 May.

Abstract

Multiphoton confocal microscopy and nonlinear spectroscopy are used to investigate the caries process in dentin. Although dentin is a major calcified tissue of the teeth, its organic phase comprises type I collagen fibers. Caries drive dentin demineralization and collagen denaturation. Multiphoton microscopy is a powerful imaging technique: the biological materials are transparent to infrared frequencies and can be excited to penetration depths inaccessible to 1-photon confocal microscopy. The laser excitation greatly reduces photodamage to the sole focal region, and the signal-to-noise ratio is improved significantly. The method has been used to follow pathologic processes involving collagen fibrosis or collagen destruction based on their 2-photon excited fluorescence (2PEF) emission and second harmonic generation (SHG). Combining multiphoton imaging with nonlinear spectroscopy, we demonstrate that both 2PEF and SHG intensity of human dentin are strongly modified during the tooth caries process, and we show that the ratio between SHG and 2PEF signals is a reliable parameter to follow dental caries. The ratio of the SHG/2PEF signals measured by nonlinear optical spectroscopy provides valuable information on the caries process, specifically on the degradation of the organic matrix of dentin. The goal is to bring these nonlinear optical signals to clinical application for caries diagnosis.

Keywords: biophotonics; demineralization; diagnostic systems; microscopy; restorative dentistry; risk factor(s).

PubMed Disclaimer

LinkOut - more resources