Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo
- PMID: 2682642
- PMCID: PMC298259
- DOI: 10.1073/pnas.86.21.8257
Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo
Abstract
Periplasmic binding protein-dependent transport systems mediate the accumulation of many diverse substrates in prokaryotic cells. Similar transport systems, including the P-glycoprotein responsible for multidrug resistance in human tumors, are also found in eukaryotes. The mechanism by which energy is coupled to the accumulation of substrate by these transport systems has been controversial. In this paper we demonstrate that ATP hydrolysis occurs in vivo concomitantly with transport. These data strongly suggest that ATP hydrolysis directly energizes substrate accumulation by these transport systems. The apparent stoichiometry is one to two molecules of ATP hydrolyzed per molecule of substrate transported.
Similar articles
-
Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins.Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2360-4. doi: 10.1073/pnas.89.6.2360. Proc Natl Acad Sci U S A. 1992. PMID: 1549599 Free PMC article.
-
The maltose transport system of Escherichia coli displays positive cooperativity in ATP hydrolysis.J Biol Chem. 1996 Mar 1;271(9):4858-63. J Biol Chem. 1996. PMID: 8617756
-
Overproduction, solubilization, and reconstitution of the maltose transport system from Escherichia coli.J Biol Chem. 1990 Mar 15;265(8):4254-60. J Biol Chem. 1990. PMID: 2155217
-
Tinkering with transporters: periplasmic binding protein-dependent maltose transport in E. coli.J Bioenerg Biomembr. 1993 Dec;25(6):613-20. doi: 10.1007/BF00770248. J Bioenerg Biomembr. 1993. PMID: 7511584 Review.
-
Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems.Biochim Biophys Acta. 1983 Aug 11;737(3-4):443-78. doi: 10.1016/0304-4157(83)90009-6. Biochim Biophys Acta. 1983. PMID: 6349688 Review. No abstract available.
Cited by
-
Modeling the stimulation by glutathione of the steady state kinetics of an adenosine triphosphate binding cassette transporter.Protein Sci. 2022 Mar;31(3):752-757. doi: 10.1002/pro.4250. Epub 2021 Dec 21. Protein Sci. 2022. PMID: 34878193 Free PMC article.
-
Structure, function, and evolution of bacterial ATP-binding cassette systems.Microbiol Mol Biol Rev. 2008 Jun;72(2):317-64, table of contents. doi: 10.1128/MMBR.00031-07. Microbiol Mol Biol Rev. 2008. PMID: 18535149 Free PMC article. Review.
-
Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli.J Bacteriol. 1996 Sep;178(18):5370-81. doi: 10.1128/jb.178.18.5370-5381.1996. J Bacteriol. 1996. PMID: 8808924 Free PMC article.
-
The mechanism of action of multidrug-resistance-linked P-glycoprotein.J Bioenerg Biomembr. 2001 Dec;33(6):481-91. doi: 10.1023/a:1012875105006. J Bioenerg Biomembr. 2001. PMID: 11804190 Review.
-
Binding protein-dependent transport systems.J Bioenerg Biomembr. 1990 Aug;22(4):571-92. doi: 10.1007/BF00762962. J Bioenerg Biomembr. 1990. PMID: 2229036 Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases