Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 8;49(3):442-9.
doi: 10.1016/j.jbiomech.2016.01.011. Epub 2016 Jan 21.

Markerless three-dimensional tracking of masticatory movement

Affiliations

Markerless three-dimensional tracking of masticatory movement

Yuto Tanaka et al. J Biomech. .

Abstract

Conventional methods for measuring mandibular movement are expensive and require headgear and a marker attached to the mandibular incisors. These make assessment of normal chewing difficult. The aim of the present study was to test the validity of a markerless three-dimensional system for tracking masticatory movement by comparing it with a conventional method using an incisal marker. The study investigated 100 chewing cycles in 10 participants. The jaw tracking system consisted of a camera capable of recording depth and red, green, and blue data simultaneously, a laptop computer, and data analysis software. Depth data for each participant's face, tracked in real time, produced a computed 3D mask. The most prominent point of the soft tissue under the lip was defined as the chin point. A dental clasp cemented to the labial surface of the mandibular incisors was defined as the incisal point. The movement of these two measuring points was simultaneously recorded during mastication of chewing gum for 20s. To conduct the same analysis on each cycle from the two measuring points, all cycles were normalized by dividing by the corresponding vertical displacement because of their size variation. The findings showed excellent intramethod correlation for normalized horizontal displacement at every level (>0.9; except for 2 out of 19 levels; 0.896 and 0.898), and a lack of proportional bias. These findings suggest a correlation between the chewing cycles from two measuring points, the incisor and the chin, further suggesting the feasibility of a markerless system for tracking masticatory movement.

Keywords: Jaw tracking; Mandibular jaw movement; Markerless motion capture; Mastication.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources