Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016:100:321-55.
doi: 10.1016/bs.vh.2015.10.012. Epub 2015 Dec 8.

Vitamin D in Prostate Cancer

Affiliations
Review

Vitamin D in Prostate Cancer

Jungmi Ahn et al. Vitam Horm. 2016.

Abstract

Metastatic castration-resistant prostate cancer (mCRPC) is a progressive, noncurable disease induced by androgen receptor (AR) upon its activation by tumor tissue androgen, which is generated from adrenal steroid dehydroepiandrosterone (DHEA) through intracrine androgen biosynthesis. Inhibition of mCRPC and early-stage, androgen-dependent prostate cancer by calcitriol, the bioactive vitamin D3 metabolite, is amply documented in cell culture and animal studies. However, clinical trials of calcitriol or synthetic analogs are inconclusive, although encouraging results have recently emerged from pilot studies showing efficacy of a safe-dose vitamin D3 supplementation in reducing tumor tissue inflammation and progression of low-grade prostate cancer. Vitamin D-mediated inhibition of normal and malignant prostate cells is caused by diverse mechanisms including G1/S cell cycle arrest, apoptosis, prodifferentiation gene expression changes, and suppressed angiogenesis and cell migration. Biological effects of vitamin D are mediated by altered expression of a gene network regulated by the vitamin D receptor (VDR), which is a multidomain, ligand-inducible transcription factor similar to AR and other nuclear receptors. AR-VDR cross talk modulates androgen metabolism in prostate cancer cells. Androgen inhibits vitamin D-mediated induction of CYP24A1, the calcitriol-degrading enzyme, while vitamin D promotes androgen inactivation by inducing phase I monooxygenases (e.g., CYP3A4) and phase II transferases (e.g., SULT2B1b, a DHEA-sulfotransferase). CYP3A4 and SULT2B1b levels are markedly reduced and CYP24A1 is overexpressed in advanced prostate cancer. In future trials, combining low-calcemic, potent next-generation calcitriol analogs with CYP24A1 inhibition or androgen supplementation, or cancer stem cell suppression by a phytonutrient such as sulfarophane, may prove fruitful in prostate cancer prevention and treatment.

Keywords: Androgen receptor; Growth inhibition VDR metabolism; Intracrine androgen metabolism; Metastatic castration-resistant prostate cancer; Transcriptional regulation; Vitamin D; Vitamin D receptor.

PubMed Disclaimer

Publication types

LinkOut - more resources