Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 22;62(1):56-62.

RT-PCR detection of exotoxin genes expression in multidrug resistant Pseudomonas aeruginosa

Affiliations
  • PMID: 26828988

RT-PCR detection of exotoxin genes expression in multidrug resistant Pseudomonas aeruginosa

Y H Tartor et al. Cell Mol Biol (Noisy-le-grand). .

Abstract

Pseudomonas aeruginosa (PA) is an opportunistic pathogen responsible for causing a wide variety of acute and chronic infections with significant levels of morbidity and mortality. These infections are very hard to eradicate because of the expression of numerous virulence factors and the intrinsic resistance against antibiotics. Herein, this study analyzed antimicrobial susceptibility of PA isolated from broiler chickens and cattle as well as expression of five significant exotoxin genes (exoU, exoS, toxA, lasB, and phzM) and ecfX as internal control. Genomic DNA was amplified employing oprL gene for species specific detection of PA. The highest resistance was found to ampicillin, erythromycin, followed by, chloramphenicol, trimethoprim/ sulfamethoxazole and tetracycline, intermediately sensitive to ceftazidime, cefoperazone, and highly sensitive to gentamicin, levofloxacin, imipenem, ciprofloxacin and colistin. It appears that exoU+ and increased resistance to SXT may be co-selected traits. Vast majority of PA isolates expressed exoS (78.6%), exoU (71.4%) and both in more virulent strains. The ubiquity of toxA, lasB, exoU and exoS among PA clinical isolates is consistent with an important role for these virulence factors in chicken respiratory diseases and cattle mastitis that can be highlighted as potential therapeutic targets for treatment of infections caused by heterogeneous and resistant PA strains.

PubMed Disclaimer

MeSH terms