A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function
- PMID: 26830310
- PMCID: PMC4740900
- DOI: 10.1038/ncomms10591
A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function
Abstract
Nature has developed striking light-powered proteins such as bacteriorhodopsin, which can convert light energy into conformational changes for biological functions. Such natural machines are a great source of inspiration for creation of their synthetic analogues. However, synthetic molecular machines typically operate at the nanometre scale or below. Translating controlled operation of individual molecular machines to a larger dimension, for example, to 10-100 nm, which features many practical applications, is highly important but remains challenging. Here we demonstrate a light-driven plasmonic nanosystem that can amplify the molecular motion of azobenzene through the host nanostructure and consequently translate it into reversible chiroptical function with large amplitude modulation. Light is exploited as both energy source and information probe. Our plasmonic nanosystem bears unique features of optical addressability, reversibility and modulability, which are crucial for developing all-optical molecular devices with desired functionalities.
Figures




Similar articles
-
Reversible Photocontrol of DNA Melting by Visible-Light-Responsive F4-Coordinated Azobenzene Compounds.Chemistry. 2018 Dec 17;24(71):18963-18970. doi: 10.1002/chem.201803529. Epub 2018 Nov 14. Chemistry. 2018. PMID: 30198626
-
Light-driven DNA nanomachine with a photoresponsive molecular engine.Acc Chem Res. 2014 Jun 17;47(6):1663-72. doi: 10.1021/ar400308f. Epub 2014 Mar 11. Acc Chem Res. 2014. PMID: 24617966
-
Switchable host-guest systems on surfaces.Acc Chem Res. 2014 Jul 15;47(7):1950-60. doi: 10.1021/ar500022f. Epub 2014 Mar 17. Acc Chem Res. 2014. PMID: 24635353
-
DNA-based machines.Top Curr Chem. 2014;354:279-338. doi: 10.1007/128_2013_515. Top Curr Chem. 2014. PMID: 24647836 Review.
-
Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.Acc Chem Res. 2014 Jan 21;47(1):138-48. doi: 10.1021/ar400086e. Epub 2013 Aug 30. Acc Chem Res. 2014. PMID: 23992824 Review.
Cited by
-
Light-Responsive Supramolecular Nanotubes-Based Chiral Plasmonic Assemblies.ACS Nano. 2023 Mar 28;17(6):5548-5560. doi: 10.1021/acsnano.2c10955. Epub 2023 Mar 10. ACS Nano. 2023. PMID: 36897199 Free PMC article.
-
A modular spring-loaded actuator for mechanical activation of membrane proteins.Nat Commun. 2022 Jul 28;13(1):3182. doi: 10.1038/s41467-022-30745-2. Nat Commun. 2022. PMID: 35902570 Free PMC article.
-
Shape-Changing Particles: From Materials Design and Mechanisms to Implementation.Adv Mater. 2022 Jan;34(3):e2105758. doi: 10.1002/adma.202105758. Epub 2021 Nov 6. Adv Mater. 2022. PMID: 34741359 Free PMC article. Review.
-
Chiral plasmonics.Sci Adv. 2017 May 17;3(5):e1602735. doi: 10.1126/sciadv.1602735. eCollection 2017 May. Sci Adv. 2017. PMID: 28560336 Free PMC article. Review.
-
Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications.Chem Rev. 2023 May 24;123(10):6839-6887. doi: 10.1021/acs.chemrev.3c00016. Epub 2023 Apr 20. Chem Rev. 2023. PMID: 37078690 Free PMC article. Review.
References
-
- Ballardini R., Balzani V., Credi A., Gandolfi M. T. & Venturi M. Artificial molecular-level machines: which energy to make them work? Acc. Chem. Res. 34, 445–455 (2001). - PubMed
-
- Browne W. R. & Feringa B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006). - PubMed
-
- Coskun A., Banaszak M., Astumian R. D., Stoddart J. F. & Grzybowski B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2011). - PubMed
-
- Balzani V., Credi A. & Venturi M. Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009). - PubMed
-
- Muraoka T., Kinbara K. & Aida T. Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources