The Recombinant Bacteriophage Endolysin HY-133 Exhibits In Vitro Activity against Different African Clonal Lineages of the Staphylococcus aureus Complex, Including Staphylococcus schweitzeri
- PMID: 26833148
- PMCID: PMC4808236
- DOI: 10.1128/AAC.02859-15
The Recombinant Bacteriophage Endolysin HY-133 Exhibits In Vitro Activity against Different African Clonal Lineages of the Staphylococcus aureus Complex, Including Staphylococcus schweitzeri
Abstract
HY-133 is a recombinant bacteriophage endolysin with bactericidal activity againstStaphylococcus aureus Here, HY-133 showedin vitroactivity against major African methicillin-susceptible and methicillin-resistantS. aureuslineages and ceftaroline/ceftobiprole- and borderline oxacillin-resistant isolates. HY-133 was also active againstStaphylococcus schweitzeri, a recently described species of theS. aureuscomplex. The activity of HY-133 on the tested isolates (MIC50, 0.25 μg/ml; MIC90, 0.5 μg/ml; range, 0.125 to 0.5 μg/ml) was independent of the species and strain background or antibiotic resistance.
Copyright © 2016, American Society for Microbiology. All Rights Reserved.
References
-
- Idelevich EA, von Eiff C, Friedrich AW, Iannelli D, Xia G, Peters G, Peschel A, Wanninger I, Becker K. 2011. In vitro activity against Staphylococcus aureus of a novel antimicrobial agent, PRF-119, a recombinant chimeric bacteriophage endolysin. Antimicrob Agents Chemother 55:4416–4419. doi: 10.1128/AAC.00217-11. - DOI - PMC - PubMed
-
- Knaack D, Idelevich EA, Schleimer N, Scherzinger AS, Kriegeskorte A, Peters G, Mutter W, Becker K. 2015. In vitro activity of recombinant chimeric bacteriophage endolysins against Staphylococcus aureus under different growth conditions. 25th European Conference of Clinical Microbiology and Infectious Diseases ESCMID Online Lecture Library, no. P0727.
-
- Tong SY, Schaumburg F, Ellington MJ, Corander J, Pichon B, Leendertz F, Bentley SD, Parkhill J, Holt DC, Peters G, Giffard PM. 2015. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int J Syst Evol Microbiol 65:15–22. doi: 10.1099/ijs.0.062752-0. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
