Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 1;50(5):2389-95.
doi: 10.1021/acs.est.5b05517. Epub 2016 Feb 18.

Biochar-Facilitated Microbial Reduction of Hematite

Affiliations

Biochar-Facilitated Microbial Reduction of Hematite

Shengnan Xu et al. Environ Sci Technol. .

Abstract

As an important component of soil organic matter (SOM), the transformation of pyrogenic carbon plays a critical role in the biogeochemical cycles of carbon and other redox-active elements such as iron (Fe). Herein, we studied the influences of wheat straw-derived biochars on the microbial reduction of 100 mM of hematite by the dissimilatory metal reducing bacteria Shewanella oneidensis MR-1 under anoxic conditions. The long-term microbial reduction extent and initial reduction rate of hematite were accelerated by more than 2-fold in the presence of 10 mg L(-1) biochar. Soluble leachate from 10 mg L(-1) biochar enhanced Fe(III) reduction to a similar degree. Microbially prereduced biochar leachate abiotically reduced hematite, consistent with the apparent electron shuttling capacity of biochar leachate. Electron paramagnetic resonance (EPR) analysis suggested that biochar leachate-associated semiquinone functional groups were likely involved in the redox reactions. In addition to electron shuttling effects, biochar particles sorbed 0.5-1.5 mM biogenic Fe(II) and thereby increased the long-term extent of hematite reduction by 1.4-1.7 fold. Our results suggest that Fe redox cycling may be strongly impacted by pyrogenic carbon in soils with relatively high content of indigenous pyrogenic carbon or substantial application of biochar.

PubMed Disclaimer

Publication types

LinkOut - more resources