Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Feb;63(2):B5204.

Modulation of motoneuron activity by serotonin

Affiliations
  • PMID: 26836802
Free article
Review

Modulation of motoneuron activity by serotonin

Jean-François Perrier. Dan Med J. 2016 Feb.
Free article

Abstract

Serotonin is a major neuromodulator in the central nervous system involved in most physiological functions including appetite regulation, sexual arousal, sleep regulation and motor control. The activity of neurons from the raphe spinal tract, which release serotonin on motoneurons, is positively correlated with motor behaviour. During moderate physical activity, serotonin is released from synaptic terminals onto the dendrites and cell bodies of motoneurons. Serotonin increases the excitability of motoneurons and thereby facilitate muscle contraction by acting on several parallel intracellular pathways. By activating 5-HT1A receptors, serotonin inhibits TWIK-related acid-sensitive potassium channels and small conductance calcium-activated potassium channels. In parallel, serotonin binds to 5-HT2 receptors, which promotes the low-threshold L-type Ca(2+) channels. During intense physical activity, more serotonin is released. The reuptake systems saturate and serotonin spills over to reach extrasynaptic 5-HT1A receptors located on the axon initial segment of motoneurons. This in turn induces the inhibition of the Na(+) channels responsible for the initiation of action potentials. Fewer nerve impulses are generated and muscle contraction becomes weaker. By decreasing the gain of motoneurons, serotonin triggers central fatigue.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources