Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 1:150:367-74.
doi: 10.1016/j.talanta.2015.12.039. Epub 2015 Dec 17.

Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans

Affiliations

Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans

Kassaye Tolessa et al. Talanta. .

Abstract

The growing global demand for specialty coffee increases the need for improved coffee quality assessment methods. Green bean coffee quality analysis is usually carried out by physical (e.g. black beans, immature beans) and cup quality (e.g. acidity, flavour) evaluation. However, these evaluation methods are subjective, costly, time consuming, require sample preparation and may end up in poor grading systems. This calls for the development of a rapid, low-cost, reliable and reproducible analytical method to evaluate coffee quality attributes and eventually chemical compounds of interest (e.g. chlorogenic acid) in coffee beans. The aim of this study was to develop a model able to predict coffee cup quality based on NIR spectra of green coffee beans. NIR spectra of 86 samples of green Arabica beans of varying quality were analysed. Partial least squares (PLS) regression method was used to develop a model correlating spectral data to cupping score data (cup quality). The selected PLS model had a good predictive power for total specialty cup quality and its individual quality attributes (overall cup preference, acidity, body and aftertaste) showing a high correlation coefficient with r-values of 90, 90,78, 72 and 72, respectively, between measured and predicted cupping scores for 20 out of 86 samples. The corresponding root mean square error of prediction (RMSEP) was 1.04, 0.22, 0.27, 0.24 and 0.27 for total specialty cup quality, overall cup preference, acidity, body and aftertaste, respectively. The results obtained suggest that NIR spectra of green coffee beans are a promising tool for fast and accurate prediction of coffee quality and for classifying green coffee beans into different specialty grades. However, the model should be further tested for coffee samples from different regions in Ethiopia and test if one generic or region-specific model should be developed.

Keywords: Coffee quality; NIR spectra; PLS model and specialty coffee.

PubMed Disclaimer

Publication types

LinkOut - more resources