Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 23;7(8):9288-95.
doi: 10.18632/oncotarget.7063.

[68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer--initial experience

Affiliations

[68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer--initial experience

Constantin Lapa et al. Oncotarget. .

Abstract

Chemokine receptor CXCR4 is a key factor for tumor growth and metastasis in several types of human cancer. This study investigated the feasibility of CXCR4-directed imaging of small cell lung cancer (SCLC) with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine ligand [68Ga]Pentixafor. 10 patients with primarily diagnosed (n=3) or pre-treated (n=7) SCLC (n=9) or large cell neuroendocrine carcinoma of the lung (LCNEC, n=1) underwent [68Ga]Pentixafor-PET/CT. 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG, n=6) and/or somatostatin receptor (SSTR)-directed PET/CT with [68Ga]DOTATOC (n=5) and immunohistochemistry (n=10) served as standards of reference. CXCR4-PET was positive in 8/10 patients and revealed more lesions with significantly higher tumor-to-background ratios than SSTR-PET. Two patients who were positive on [18F]FDG-PET were missed by CXCR4-PET, in the remainder [68Ga]Pentixafor detected an equal (n=2) or higher (n=2) number of lesions. CXCR4 expression of tumor lesions could be confirmed by immunohistochemistry. Non-invasive imaging of CXCR4 expression in SCLC is feasible. [68Ga]Pentixafor as a novel PET tracer might serve as readout for confirmation of CXCR4 expression as prerequisite for potential CXCR4-directed treatment including receptor-radio(drug)peptide therapy.

Keywords: CXCR4; PET; SCLC; molecular imaging; small cell lung cancer.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

HJW is the founder and shareholder of Scintomics. SK is CEO of Scintomics. All other authors declare no conflicts of interest.

Figures

Figure 1
Figure 1. Example of a CXCR4-positive, SSTR-negative SCLC patient
Display of maximum intensity projections (upper row) and transaxial images (lower row) of both CXCR4- and SSTR-directed PET/CT (interval between both scans, 6 days) in a patient with recurrent SCLC (patient #3). Whereas [68Ga]Pentixafor-PET demonstrates intense tracer retention in various tumor manifestations including mediastinal lymph nodes, bone and pleural lesions, SSTR-directed PET proves negative (arrows; insert: corresponding contrast-enhanced transaxial CT).
Figure 2
Figure 2. Example of additional value of [68Ga]Pentixafor-PET in an SCLC patient
Display of maximum intensity projections (upper row) and transaxial images (lower row) of both CXCR4- and [18F]FDG-PET/CT (interval between both scans, 6 days) in a patient with recurrent SCLC (patient #4). [68Ga]Pentixafor-PET demonstrates more intense tracer retention in various tumor manifestations including mediastinal lymph nodes (arrows; insert: corresponding contrast-enhanced transaxial CT).
Figure 3
Figure 3. Immunohistochemical expression of CXCR4 and somatostatin receptors 2a and 5 in SCLC
Display of two examples of immunohistochemical expression of CXCR4 and SSTR2a and 5, respectively. Patient #3 had his biopsy taken from a lymph node metastasis demonstrating a weak staining for CXCR4 in 90% of the tumor cells (IRS 4). SSTR2a was negative, SSTR5 could also be demonstrated to be weakly expressed in 90% (IRS 4). Patient #9 also presented with extensive disease. Biopsy of the primary tumor revealed mild CXCR4 (intensity 1+ in 70% of the cells, IRS 3) and mild SSTR2a (intensity 1+ in 90%; IRS 4) expression. SSTR5 was negative in the sample. The inserts depict maximum intensity projections are the respective whole-body [68Ga]Pentixafor- and SSTR-directed PET/CT scans, respectively.

References

    1. Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, Spitznagel EL, Piccirillo J. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. Journal of clinical oncology. 2006;24:4539–4544. - PubMed
    1. Cuffe S, Moua T, Summerfield R, Roberts H, Jett J, Shepherd FA. Characteristics and outcomes of small cell lung cancer patients diagnosed during two lung cancer computed tomographic screening programs in heavy smokers. Journal of thoracic oncology. 2011;6:818–822. - PubMed
    1. Wolfson AH, Bae K, Komaki R, Meyers C, Movsas B, Le Pechoux C, Werner-Wasik M, Videtic GM, Garces YI, Choy H. Primary analysis of a phase II randomized trial Radiation Therapy Oncology Group (RTOG) 0212: impact of different total doses and schedules of prophylactic cranial irradiation on chronic neurotoxicity and quality of life for patients with limited-disease small-cell lung cancer. International journal of radiation oncology, biology, physics. 2011;81:77–84. - PMC - PubMed
    1. Foster NR, Qi Y, Shi Q, Krook JE, Kugler JW, Jett JR, Molina JR, Schild SE, Adjei AA, Mandrekar SJ. Tumor response and progression-free survival as potential surrogate endpoints for overall survival in extensive stage small-cell lung cancer: findings on the basis of North Central Cancer Treatment Group trials. Cancer. 2011;117:1262–1271. - PMC - PubMed
    1. Fruh M, De Ruysscher D, Popat S, Crino L, Peters S, Felip E, Group EGW. Small-cell lung cancer (SCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology. 2013;24(Suppl 6):vi99–105. - PubMed

Publication types

MeSH terms