Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 23;7(8):9550-60.
doi: 10.18632/oncotarget.7072.

A TET2 rs3733609 C/T genotype is associated with predisposition to the myeloproliferative neoplasms harboring JAK2(V617F) and confers a proliferative potential on erythroid lineages

Affiliations

A TET2 rs3733609 C/T genotype is associated with predisposition to the myeloproliferative neoplasms harboring JAK2(V617F) and confers a proliferative potential on erythroid lineages

Xiao-hui Shen et al. Oncotarget. .

Abstract

Common germline single-nucleotide polymorphisms (SNPs) at JAK2 locus have been associated with Myeloproliferative neoplasms (MPN). And, the germline sequence variant rs2736100 C in TERT is related to risk of MPN, suggesting a complex association between SNPs and the pathogenesis of MPN. Our previous study (unpublished data) showed that there was a high frequency distribution in rs3733609 C/T genotype at Ten-Eleven Translocation 2 (TET2) locus in one Chinese familial primary myelofibrosis. In the present study, we evaluate the role and clinical significance of rs3733609 C/T genotype in JAK2V617F-positive sporadic MPN (n = 181). TET2 rs3733609 C/T genotype had a higher incidence (13.81%; 25/181) in JAK2V617F-positive sporadic MPN patients than that in normal controls (n = 236) (6.35%; 15/236), which was predisposing to MPN (odds ratio(OR) = 2.361; P = 0.01). MPN patients with rs3733609 C/T genotype had increased leukocyte and platelets counts, elevated hemoglobin concentration in comparison with T/T genotype. Thrombotic events were more common in MPN patients with rs3733609 C/T than those with T/T genotype (P < 0.01). We confirmed that rs3733609 C/T genotype downregulated TET2 mRNA transcription, and the mechanism may be involved in a disruption of the interaction between CCAAT/enhancer binding protein alpha (C/EBPA) and TET2 rs3733609 C/T locus.TET2 rs3733609 C/T genotype stimulated the erythroid hematopoiesis in MPN patients. Altogether, we found a novel hereditary susceptible factor-TET2 rs3733609 C/T variant for the development of MPN, suggesting the variant may be partially responsible for the pathogenesis and accumulation of MPN.

Keywords: TET2; clinical significance; mechanisms; myeloproliferative neoplasms; rs3733609.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest in the article.

Figures

Figure 1
Figure 1. A representative DNA sequence of TET2 rs3733609 genotype (Left: T/T genotype; Right: C/T genotype)
Figure 2
Figure 2. The mRNA expression levels for TET2 gene in bone marrow mononuclear cells between C/T and T/T genotype MPN patients
Compared with T/T genotype, TET2 mRNA levels were markedly decreased by 71.2% in rs3733609 C/T genotype group (P = 0.006).
Figure 3
Figure 3. C/EBPA binds to the exon 9 of TET2
(A) A schematic diagram for the positions of putative C/EBPA protein binding sites in the exon 9 of TET2. Arrows indicate the regions for PCR primers amplification. (B) CHIP assay was performed on human bone marrow mononuclear cells (BMMNCs) using C/EBPA antibody or mouse IgG and the immunoprecipitated chromatin DNA was subjected to PCR using primers to amplify the region of biding sites for C/EBPA. (C) Precipitated chromatin DNA were subjected to qPCR to amplify this region, and the results showed that the region of +86 to +98 in TET2 exon 9 was enriched 15.7 fold in the C/EBPA chromatin immunoprecipitates in patients with rs3733609 T/T genotype compared with C/T genotype group (P < 0.001).
Figure 4
Figure 4. Luciferase activities assay
(A) A schematic diagram of the reporter constructs containing the sequences of TET2 exon 9. The mutant construct containing identified mutation site (position +96) in the TET2 exon 9 is shown. (B) Results are shown as fold change of luciferase activity corresponding to pGL3-promoter vector, the wild vector displayed the stronger luciferase activity than the pGL3-promoter-vector (P = 0.014); the luciferase activity of mutant vector was dramatically reduced to 0.38 fold in transfected HEL cells than that of the wild-type vector (P = 0.009). Values are means ± SD of triplet data from 3 different experiments.
Figure 5
Figure 5. Photomicrographs of BFU-E colonies in vitro (Left: magnification 40×; Right: magnification 100×)
(A) The BFU-E colonies derived from the bone marrow mononuclear cells with C/T genotype. (B) The BFU-E colonies derived from the bone marrow mononuclear cells with T/T genotype. (C) Colonies were stained by benzidine staining. Blue-black colonies were BFU-E colonies. As shown in Figure A and B, the colony numbers and volume from C/T genotype patients were more and larger than that of T/T genotype.

Similar articles

Cited by

References

    1. Passamonti F, Maffioli M, Caramazza D, Cazzola M. Myeloproliferative neoplasms: From JAK2 mutations discovery to JAK2 inhibitor therapies. Oncotarget. 2011;2:485–490. doi: 10.18632/oncotarget.281. - DOI - PMC - PubMed
    1. Cazzola M, Kralovic R. From Janus kinase 2 to calreticulin: The clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 2014;123:3714–3719. - PubMed
    1. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–1790. - PubMed
    1. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–1148. - PubMed
    1. Jones AV, Cross NC. Inherited predisposition to myeloproliferative neoplasms. Ther Adv Hematol. 2013;4:237–253. - PMC - PubMed

Publication types

Supplementary concepts

LinkOut - more resources