Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989 Nov;17(5):308-26.
doi: 10.2165/00003088-198917050-00002.

Pharmacokinetic implications for the clinical use of propofol

Affiliations
Review

Pharmacokinetic implications for the clinical use of propofol

J Kanto et al. Clin Pharmacokinet. 1989 Nov.

Abstract

Propofol, the recently marketed intravenous induction agent for anaesthesia, is chemically unrelated to earlier anaesthetic drugs. This highly lipophilic agent has a fast onset and short, predictable duration of action due to its rapid penetration of the blood-brain barrier and distribution to the CNS, followed by redistribution to inactive tissue depots such as muscle and fat. On the basis of pharmacokinetic-pharmacodynamic modelling, a mean blood-brain equilibration half-life of only 2.9 minutes has been calculated. In most studies, the blood concentration curve of propofol has been best fitted to a 3-compartment open model, although in some patients only 2 exponential phases can be defined. The first exponential phase half-life of 2 to 3 minutes mirrors the rapid onset of action, the second (34 to 56 minutes) that of the high metabolic clearance, whereas the long third exponential phase half-life of 184 to 480 minutes describes the slow elimination of a small proportion of the drug remaining in poorly perfused tissues. Thus, after both a single intravenous injection and a continuous intravenous infusion, the blood concentrations rapidly decrease below those necessary to maintain sleep (around 1 mg/L), based on both the rapid distribution, redistribution and metabolism during the first and second exponential phases (more than 70% of the drug is eliminated during these 2 phases). During long term intravenous infusions cumulative drug concentrations and effects might be expected, but even then the recovery times do not appear to be much delayed. The liver is probably the main eliminating organ, and renal clearance appears to play little part in the total clearance of propofol. On the other hand, because the total body clearance may exceed liver blood flow, an extrahepatic metabolism or extrarenal elimination (e.g. via the lungs) has been suggested. Approximately 60% of a radiolabelled dose of propofol is excreted in the urine as 1- and 4-glucuronide and 4-sulphate conjugates of 2.6-diisopropyl 1,4-quinol, and the remainder consists of the propofol glucuronide. Thus for hepatic and renal diseases, co-medication, surgical procedure, gender and obesity do not appear to cause clinically significant changes in the pharmacokinetic profile of propofol, but the decrease in the clearance value in the elderly might produce higher concentrations during a long term infusion, with an increased drug effect. In addition, the lower induction dose observed in relation to increased age might be partly explained by a smaller central volume of distribution.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. Int J Clin Monit Comput. 1989 Apr;6(2):67-73 - PubMed
    1. Eur J Clin Pharmacol. 1978 Jun 19;13(4):275-84 - PubMed
    1. Anesthesiology. 1988 Sep;69(3):348-56 - PubMed
    1. Br J Anaesth. 1983 Feb;55(2):97-103 - PubMed
    1. J Chromatogr. 1981 Apr 10;223(1):232-7 - PubMed

Publication types

LinkOut - more resources