Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016:49:103-11.
doi: 10.1159/000441549. Epub 2016 Feb 4.

Penetration through the Skin Barrier

Review

Penetration through the Skin Barrier

Jesper Bo Nielsen et al. Curr Probl Dermatol. 2016.

Abstract

The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates. During recent decades, the latter has received increased attention as a route for intentionally delivering drugs to patients. This has stimulated research in methods for sampling, measuring and predicting percutaneous penetration. Previous chapters have described how different endogenous, genetic and exogenous factors may affect barrier characteristics. The present chapter introduces the theory for barrier penetration (Fick's law), and describes and discusses different methods for measuring the kinetics of percutaneous penetration of chemicals, including in vitro methods (static and flow-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous penetration. Finally, a short discussion of the advantages and challenges of each method is provided, which will hopefully allow the reader to improve decision making and treatment planning, as well as the evaluation of experimental studies of percutaneous penetration of chemicals.

PubMed Disclaimer

LinkOut - more resources