Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989:148:1-42.
doi: 10.1007/978-3-642-74700-7_1.

Molecular biology of Friend viral erythroleukemia

Review

Molecular biology of Friend viral erythroleukemia

D Kabat. Curr Top Microbiol Immunol. 1989.

Abstract

Friend virus clearly provides an important model for understanding the molecular biology of cancer. Moreover, the most important aspects of the erythroleukemia can be caused by a single SFFV infection in the absence of any helper virus. The SFFV env gene encodes a membrane glycoprotein, gp55. This glycoprotein, when expressed on erythroblast surfaces, causes a constitutive mitogenesis. However, SFFV infections only rarely increase the cell's self-renewal capability or abrogate its commitment to differentiate. Therefore, the consequence of infection is initially a polyclonal erythroblastosis. This polyclonal proliferation usually leads to cell differentiation and to recovery unless helper virus is present to cause continuing infection of new erythroblasts. Extremely rare SFFV proviral integrations, however, result in abrogation of the cell's commitment to differentiate and in the concomitant acquisition of cell immortality. These immortalizing proviral integrations occur at only a small number of sites in the mouse genome. Therefore, the mitogenic and immortalizing stages of erythroleukemia are now known to be caused by discrete genetic events--the first involving the SFFV env gene and the second involving the rare proviral integration sites. In early investigations of Friend virus, the first stage always preceded the second stage by at least several weeks. Now it is known that this delay in onset of the second stage is caused solely by statistics. Every SFFV-infected erythroblast is mitogenically activated, yet only rarely does the SFFV proviral integration produce immortality. Both steps in leukemogenesis can be caused simultaneously in an erythroblast by a rare single SFFV proviral integration. There has been an explosion of interest in retroviral env gene-mediated pathogenesis. Such pathogenesis has been recently associated with most of the naturally transmitted retroviral diseases including AIDS. Such pathogenesis involves in different viruses immunosuppression, anemia, neuropathy, and leukemia (Mathes et al. 1978; Simon et al. 1984, 1987; Weiss et al. 1985; Lifson et al. 1986; Riedel et al. 1986; Sitbon et al. 1986; Sodroski et al. 1986; Mitani et al. 1987; Schmidt et al. 1987; Klase et al. 1988; Overbaugh et al. 1988a, b). The shuffling and dynamic env gene rearrangements that have been associated with murine retroviral leukemogenesis have also now been seen in FeLV-FAIDS and HIV (Fisher et al. 1988; Overbaugh et al. 1 t88b; Saag et al. 1988; Tersmette et al. 1988). Friend virus provides an important established example of such env gene pathogenesis. Although we still do not understand precisely how gp55 causes erythroblast mitosis, workers in this field have discovered important clues that may lead to answers.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources