Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb;36(2):523-32.

Molecular Pathways Mediating Metastases to the Brain via Epithelial-to-Mesenchymal Transition: Genes, Proteins, and Functional Analysis

Affiliations
  • PMID: 26851006

Molecular Pathways Mediating Metastases to the Brain via Epithelial-to-Mesenchymal Transition: Genes, Proteins, and Functional Analysis

Dhruve S Jeevan et al. Anticancer Res. 2016 Feb.

Abstract

Background: Brain metastases are the leading cause of morbidity and mortality among patients with disseminated cancer. The development of metastatic disease involves an orderly sequence of steps enabling tumor cells to migrate from the primary tumor and colonize at secondary locations. In order to achieve this complex metastatic potential, a cancer cell is believed to undergo a cellular reprogramming process involving the development of a degree of stemness, via a proposed process termed epithelial-to-mesenchymal transition (EMT). Upon reaching its secondary site, these reprogrammed cancer stem cells submit to a reversal process designated mesenchymal-to-epithelial transition (MET), enabling establishment of metastases. Here, we examined the expression of markers of EMT, MET, and stem cells in metastatic brain tumor samples.

Materials and methods: Immunohistochemical analyses were performed to establish the markers of EMT and MET. Co-expression of these markers was determined by immunofluorescence analysis. Gene-expression analysis was conducted using tissues from brain metastases of primary adenocarcinoma of the lung compared to non-metastatic tissue. Cell proliferation was carried out using 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide S-phase entry analysis, by determining the 5-ethynyl-2'-deoxyuridine incorporation. Scratch wound and chemotactic migration assays were performed in an astrocytic setting.

Results: Metastatic brain tumor samples displayed expression of epithelial markers (zinc finger protein SNAI1 and Twist-related protein-1), as well as the mesenchymal marker vimentin. The stem cell marker CD44 was also highly expressed. Moreover, co-expression of the epithelial marker E-cadherin with the mesenchymal marker vimentin was evident, suggesting a state of transition. Expression analysis of transcription factor genes in metastatic brain tumor samples demonstrated an alteration in genes associated with neurogenesis, differentiation, and reprogramming. Furthermore, tumor cells grown in astrocytic medium displayed increased cell proliferation and enhanced S-phase cell-cycle entry. Additionally, chemotactic signaling from the astrocytic environment promoted tumor cell migration. Primary tumor cells and astrocytes were also shown to grow amicably together, forming cell-to-cell interactions.

Conclusion: These findings suggest that cellular reprogramming via EMT/MET plays a critical step in the formation of brain metastases, where the cerebral milieu provides a microenvironment suitable for the development of metastatic disease.

Keywords: Metastatic tumors; brain metastasis; epithelial-to-mesenchymal transition; homing; invasion; stem cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources