Why neurons mix: high dimensionality for higher cognition
- PMID: 26851755
- DOI: 10.1016/j.conb.2016.01.010
Why neurons mix: high dimensionality for higher cognition
Abstract
Neurons often respond to diverse combinations of task-relevant variables. This form of mixed selectivity plays an important computational role which is related to the dimensionality of the neural representations: high-dimensional representations with mixed selectivity allow a simple linear readout to generate a huge number of different potential responses. In contrast, neural representations based on highly specialized neurons are low dimensional and they preclude a linear readout from generating several responses that depend on multiple task-relevant variables. Here we review the conceptual and theoretical framework that explains the importance of mixed selectivity and the experimental evidence that recorded neural representations are high-dimensional. We end by discussing the implications for the design of future experiments.
Copyright © 2016. Published by Elsevier Ltd.
Similar articles
-
The importance of mixed selectivity in complex cognitive tasks.Nature. 2013 May 30;497(7451):585-90. doi: 10.1038/nature12160. Epub 2013 May 19. Nature. 2013. PMID: 23685452 Free PMC article.
-
The implications of categorical and category-free mixed selectivity on representational geometries.Curr Opin Neurobiol. 2022 Dec;77:102644. doi: 10.1016/j.conb.2022.102644. Epub 2022 Oct 28. Curr Opin Neurobiol. 2022. PMID: 36332415 Review.
-
Coding of distributed, topographic and non-specific representations within the brain.Biosystems. 2008 May;92(2):159-67. doi: 10.1016/j.biosystems.2008.02.001. Epub 2008 Feb 16. Biosystems. 2008. PMID: 18367317
-
Task set and prefrontal cortex.Annu Rev Neurosci. 2008;31:219-45. doi: 10.1146/annurev.neuro.31.060407.125642. Annu Rev Neurosci. 2008. PMID: 18558854 Review.
-
Real-time computing without stable states: a new framework for neural computation based on perturbations.Neural Comput. 2002 Nov;14(11):2531-60. doi: 10.1162/089976602760407955. Neural Comput. 2002. PMID: 12433288
Cited by
-
Biased Neural Representation of Feature-Based Attention in the Human Frontoparietal Network.J Neurosci. 2020 Oct 21;40(43):8386-8395. doi: 10.1523/JNEUROSCI.0690-20.2020. Epub 2020 Oct 1. J Neurosci. 2020. PMID: 33004380 Free PMC article.
-
The dimensionality of neural representations for control.Curr Opin Behav Sci. 2021 Apr;38:20-28. doi: 10.1016/j.cobeha.2020.07.002. Epub 2020 Aug 19. Curr Opin Behav Sci. 2021. PMID: 32864401 Free PMC article.
-
Co-existence of synaptic plasticity and metastable dynamics in a spiking model of cortical circuits.bioRxiv [Preprint]. 2024 Jun 9:2023.12.07.570692. doi: 10.1101/2023.12.07.570692. bioRxiv. 2024. Update in: PLoS Comput Biol. 2024 Jul 1;20(7):e1012220. doi: 10.1371/journal.pcbi.1012220. PMID: 38106233 Free PMC article. Updated. Preprint.
-
Neural representational geometries reflect behavioral differences in monkeys and recurrent neural networks.Nat Commun. 2024 Aug 1;15(1):6479. doi: 10.1038/s41467-024-50503-w. Nat Commun. 2024. PMID: 39090091 Free PMC article.
-
Visual perceptual learning of feature conjunctions leverages non-linear mixed selectivity.NPJ Sci Learn. 2024 Mar 1;9(1):13. doi: 10.1038/s41539-024-00226-w. NPJ Sci Learn. 2024. PMID: 38429339 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical