Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 19;18(4):876-9.
doi: 10.1021/acs.orglett.6b00208. Epub 2016 Feb 8.

Thioetherification via Photoredox/Nickel Dual Catalysis

Affiliations

Thioetherification via Photoredox/Nickel Dual Catalysis

Matthieu Jouffroy et al. Org Lett. .

Abstract

Hypervalent alkylsilicates represent new and readily accessible precursors for the generation of alkyl radicals under photoredox conditions. Alkyl radicals generated from such silicates serve as effective hydrogen atom abstractors from thiols, furnishing thiyl radicals. The reactive sulfur species generated in this manner can be funneled into a nickel-mediated cross-coupling cycle employing aromatic bromides to furnish thioethers. The serendipitous discovery of this reaction and its utilization for the thioetherification of various aryl and heteroaryl bromides with a diverse array of thiols is described. The S-H selective H atom abstraction event enables a wide range of functional groups, including those bearing protic moieties, to be tolerated.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Unexpected Thioetherification Observed When Using Alkylsilicate 1a and a Plausible Mechanistic Rationalization
Scheme 2
Scheme 2. Photoredox Thioetherification Using Thiolsilicate 1a
Reaction run on 5 mmol using blue LEDs; all other reactions run on a 0.5 mmol scale of aryl/heteroaryl bromide.
Scheme 3
Scheme 3. Plausible Catalytic Cycle for Thioetherification via Photoredox/Ni Dual Catalysis Using Silicates for H-Atom Abstraction
Scheme 4
Scheme 4. Photoredox Thioetherification of 4-Bromobenzonitrile Using Various Thiols and Silicate 1b as a H-Atom Abstractor
Compound 3e was prepared starting from cysteamine hydrochloride. Reaction run on 5 mmol using blue LEDs; all other reactions run on a 0.5 mmol scale of 4-bromobenzonitrile.
Scheme 5
Scheme 5. Photoredox Thioetherification Using Various Thiols and Aryl/Heteroaryl Bromides and Silicate 1b as a H-Atom Abstractor
Reactions performed on a 0.5 mmol scale of aryl/heteroaryl bromide unless otherwise noted. Performed on 0.41 mmol scale. Performed on 0.37 mmol scale.

Similar articles

Cited by

References

    1. Douglas J. J.; Nguyen J. D.; Cole K. P.; Stephenson C. R. J. Aldrichimica Acta 2014, 47, 15.
    2. Tucker J. W.; Stephenson C. R. J. J. Org. Chem. 2012, 77, 1617.10.1021/jo202538x. - DOI - PubMed
    3. Prier C. K.; Rankic D. A.; MacMillan D. W. C. Chem. Rev. 2013, 113, 5322.10.1021/cr300503r. - DOI - PMC - PubMed
    4. Hopkinson M. N.; Sahoo B.; Li J.-L.; Glorius F. Chem. - Eur. J. 2014, 20, 3874.10.1002/chem.201304823. - DOI - PubMed
    1. Seminal reports:

    2. Tellis J. C.; Primer D. N.; Molander G. A. Science 2014, 345, 433.10.1126/science.1253647. - DOI - PMC - PubMed
    3. Zuo Z. W.; Ahneman D. T.; Chu L. L.; Terrett J. A.; Doyle A. G.; MacMillan D. W. C. Science 2014, 345, 437.10.1126/science.1255525. - DOI - PMC - PubMed
    4. Kalyani D.; McMurtrey K. B.; Neufeldt S. R.; Sanford M. S. J. Am. Chem. Soc. 2011, 133, 18566.10.1021/ja208068w. - DOI - PMC - PubMed
    5. Ye Y.; Sanford M. S. J. Am. Chem. Soc. 2012, 134, 9034.10.1021/ja301553c. - DOI - PMC - PubMed
    6. Sahoo B.; Hopkinson M. N.; Glorius F. J. Am. Chem. Soc. 2013, 135, 5505.10.1021/ja400311h. - DOI - PubMed
    1. Recent work in photoredox dual catalysis:

    2. Primer D. N.; Karakaya I.; Tellis J. C.; Molander G. A. J. Am. Chem. Soc. 2015, 137, 2195.10.1021/ja512946e. - DOI - PMC - PubMed
    3. Karakaya I.; Primer D. N.; Molander G. A. Org. Lett. 2015, 17, 3294.10.1021/acs.orglett.5b01463. - DOI - PMC - PubMed
    4. El Khatib M.; Serafim R. A. M.; Molander G. A. Angew. Chem., Int. Ed. 2016, 55, 254.10.1002/anie.201506147. - DOI - PMC - PubMed
    5. Rueping M.; Koenigs R. M.; Poscharny K.; Fabry D. C.; Leonori D.; Vila C. Chem. - Eur. J. 2012, 18, 5170.10.1002/chem.201200050. - DOI - PubMed
    6. Shu X. Z.; Zhang M.; He Y.; Frei H.; Toste F. D. J. Am. Chem. Soc. 2014, 136, 5844.10.1021/ja500716j. - DOI - PMC - PubMed
    7. Noble A.; McCarver S. J.; MacMillan D. W. C. J. Am. Chem. Soc. 2015, 137, 624.10.1021/ja511913h. - DOI - PMC - PubMed
    8. Chu L.; Lipshultz J. M.; MacMillan D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929.10.1002/anie.201501908. - DOI - PMC - PubMed
    9. Le C. C.; MacMillan D. W. C. J. Am. Chem. Soc. 2015, 137, 11938.10.1021/jacs.5b08304. - DOI - PMC - PubMed
    1. Jouffroy M.; Primer D. N.; Molander G. A. J. Am. Chem. Soc. 2016, 138, 475.10.1021/jacs.5b10963. - DOI - PMC - PubMed
    2. Corce V.; Chamoreau L.-M.; Derat E.; Goddard J.-P.; Ollivier C.; Fensterbank L. Angew. Chem., Int. Ed. 2015, 54, 11414.10.1002/anie.201504963. - DOI - PubMed
    3. Matsuoka D.; Nishigaichi Y. Chem. Lett. 2014, 43, 559.10.1246/cl.131132. - DOI
    4. Matsuoka D.; Nishigaichi Y. Chem. Lett. 2015, 44, 163.10.1246/cl.140940. - DOI
    1. Tian Z.; Fattahi A.; Lis L.; Kass S. R. J. Am. Chem. Soc. 2006, 128, 17087.10.1021/ja065348u. - DOI - PubMed
    2. Blanksby S. J.; Ellison G. B. Acc. Chem. Res. 2003, 36, 255.10.1021/ar020230d. - DOI - PubMed
    3. Huston P.; Espenson J. H.; Bakac A. J. Am. Chem. Soc. 1992, 114, 9510.10.1021/ja00050a033. - DOI
    4. Review on thiyl radicals:Denes F.; Pichowicz M.; Povie G.; Renaud P. Chem. Rev. 2014, 114, 2587.10.1021/cr400441m. - DOI - PubMed

Publication types

LinkOut - more resources