Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr-May:89-90:147-54.
doi: 10.1016/j.envint.2016.01.022. Epub 2016 Feb 6.

Evolution of electronic waste toxicity: Trends in innovation and regulation

Affiliations
Free article

Evolution of electronic waste toxicity: Trends in innovation and regulation

Mengjun Chen et al. Environ Int. 2016 Apr-May.
Free article

Abstract

Rapid innovation in printed circuit board, and the uncertainties surrounding quantification of the human and environmental health impacts of e-waste disposal have made it difficult to confirm the influence of evolving e-waste management strategies and regulatory policies on materials. To assess these influences, we analyzed hazardous chemicals in a market-representative set of Waste printed circuit boards (WPCBs, 1996-2010). We used standard leaching tests to characterize hazard potential and USEtox® to project impacts on human health and ecosystem. The results demonstrate that command-and-control regulations have had minimal impacts on WPCBs composition and toxicity risks; whereas technological innovation may have been influenced more by resource conservation, including a declining trend in the use of precious metals such as gold. WPCBs remain classified as hazardous under U.S. and California laws because of excessive toxic metals. Lead poses the most significant risk for cancers; zinc for non-cancer diseases; copper had the largest potential impact on ecosystem quality. Among organics, acenaphthylene, the largest risk for cancers; naphthalene for non-cancer diseases; pyrene has the highest potential for ecotoxicological impacts. These findings support the need for stronger enforcement of international policies and technology innovation to implement the strategy of design-for-the-environment and to encourage recovery, recycling, and reuse of WPCBs.

Keywords: Environmental pollution; Human health; International regulatory policies; Life cycle impact assessment; Restriction of hazardous substances; Technological innovation.

PubMed Disclaimer

Publication types

Substances