Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 8;8(1):14.
doi: 10.1186/s13073-016-0277-0.

Exonic enhancers: proceed with caution in exome and genome sequencing studies

Affiliations

Exonic enhancers: proceed with caution in exome and genome sequencing studies

Nadav Ahituv. Genome Med. .

Abstract

Exonic enhancers (eExons) are coding exons that also function as enhancers of the gene in which they reside or (a) nearby gene(s). Mutations that affect the enhancer activity of these eExons have been associated with human disease. Therefore, eExon mutations should be taken into account in exome and genome sequencing projects, not only because of the ability of these mutations to modify the encoded proteins but also because of their effects on enhancer activity.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
DYNC1I1 exonic enhancers (eExons) regulate DLX5 and DLX6. a The DYNC1I1-DLX5/6 locus has two known eExons, DYNC1I1 exons 15 and 17 (colored in blue), that are functional limb enhancers and were shown to interact with DLX5 and DLX6 [4]. A 106 kb deletion (red line) that contains these eExons was found in an individual with split hand and foot malformation (SHFM) [10]. b A fictional example of a mutation in an eExon that could be overlooked in exome or genome sequencing studies. The chromatogram shows a synonymous mutation in an eExon that could leave the protein sequence unchanged but could affect a transcription factor binding site (logo plot below) leading to changes in the enhancer function of this eExon. DLX5 Distal-less homeobox 5, DLX6 Distal-less homeobox 6, DYNC1I1 Dynein cytoplasmic 1 intermediate chain 1

References

    1. Matharu N, Ahituv N. Minor loops in major folds: enhancer-promoter looping, chromatin restructuring, and their association with transcriptional regulation and disease. PLoS Genet. 2015;11:e1005640. doi: 10.1371/journal.pgen.1005640. - DOI - PMC - PubMed
    1. Neznanov N, Umezawa A, Oshima RG. A regulatory element within a coding exon modulates keratin 18 gene expression in transgenic mice. J Biol Chem. 1997;272:27549–57. doi: 10.1074/jbc.272.44.27549. - DOI - PubMed
    1. Ritter DI, Dong Z, Guo S, Chuang JH. Transcriptional enhancers in protein-coding exons of vertebrate developmental genes. PLoS ONE. 2012;7:e35202. doi: 10.1371/journal.pone.0035202. - DOI - PMC - PubMed
    1. Birnbaum RY, Clowney EJ, Agamy O, Kim MJ, Zhao J, Yamanaka T, et al. Coding exons function as tissue-specific enhancers of nearby genes. Genome Res. 2012;22:1059–68. doi: 10.1101/gr.133546.111. - DOI - PMC - PubMed
    1. Dong X, Navratilova P, Fredman D, Drivenes O, Becker TS, Lenhard B. Exonic remnants of whole-genome duplication reveal cis-regulatory function of coding exons. Nucleic Acids Res. 2010;38:1071–85. doi: 10.1093/nar/gkp1124. - DOI - PMC - PubMed

Publication types

LinkOut - more resources