Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0
- PMID: 26857594
- PMCID: PMC4746737
- DOI: 10.1038/srep20761
Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0
Abstract
Filamentous fungi play important roles in the production of plant cell-wall degrading enzymes. In recent years, homologous recombinant technologies have contributed significantly to improved enzymes production and system design of genetically manipulated strains. When introducing multiple gene deletions, we need a robust and convenient way to control selectable marker genes, especially when only a limited number of markers are available in filamentous fungi. Integration after transformation is predominantly nonhomologous in most fungi other than yeast. Fungal strains deficient in the non-homologous end-joining (NHEJ) pathway have limitations associated with gene function analyses despite they are excellent recipient strains for gene targets. We describe strategies and methods to address these challenges above and leverage the power of resilient NHEJ deficiency strains. We have established a foolproof light-inducible platform for one-step unmarked genetic modification in industrial eukaryotic microorganisms designated as 'LML 3.0', and an on-off control protocol of NHEJ pathway called 'OFN 1.0', using a synthetic light-switchable transactivation to control Cre recombinase-based excision and inversion. The methods provide a one-step strategy to sequentially modify genes without introducing selectable markers and NHEJ-deficiency. The strategies can be used to manipulate many biological processes in a wide range of eukaryotic cells.
Figures





Similar articles
-
Using non-homologous end-joining-deficient strains for functional gene analyses in filamentous fungi.Methods Mol Biol. 2012;835:133-50. doi: 10.1007/978-1-61779-501-5_9. Methods Mol Biol. 2012. PMID: 22183652
-
Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies.Biotechnol Adv. 2013 Dec;31(8):1562-74. doi: 10.1016/j.biotechadv.2013.08.005. Epub 2013 Aug 26. Biotechnol Adv. 2013. PMID: 23988676 Review.
-
New tools for the genetic manipulation of filamentous fungi.Appl Microbiol Biotechnol. 2010 Mar;86(1):51-62. doi: 10.1007/s00253-009-2416-7. Epub 2010 Jan 28. Appl Microbiol Biotechnol. 2010. PMID: 20107987 Review.
-
Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans.Fungal Genet Biol. 2008 Mar;45(3):165-70. doi: 10.1016/j.fgb.2007.07.003. Epub 2007 Jul 20. Fungal Genet Biol. 2008. PMID: 17703973
-
Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi.Appl Microbiol Biotechnol. 2018 Aug;102(15):6357-6372. doi: 10.1007/s00253-018-9115-1. Epub 2018 Jun 2. Appl Microbiol Biotechnol. 2018. PMID: 29860590 Free PMC article. Review.
Cited by
-
Trichoderma reesei ACE4, a Novel Transcriptional Activator Involved in the Regulation of Cellulase Genes during Growth on Cellulose.Appl Environ Microbiol. 2021 Jul 13;87(15):e0059321. doi: 10.1128/AEM.00593-21. Epub 2021 Jul 13. Appl Environ Microbiol. 2021. PMID: 34047636 Free PMC article.
-
Metabolic Engineering of Filamentous Fungus Trichoderma reesei for Itaconic Acid Production.J Agric Food Chem. 2025 Feb 26;73(8):4716-4724. doi: 10.1021/acs.jafc.4c10107. Epub 2025 Feb 18. J Agric Food Chem. 2025. PMID: 39963051
-
Roles of PKAc1 and CRE1 in cellulose degradation, conidiation, and yellow pigment synthesis in Trichoderma reesei QM6a.Biotechnol Lett. 2022 Dec;44(12):1465-1475. doi: 10.1007/s10529-022-03312-4. Epub 2022 Oct 21. Biotechnol Lett. 2022. PMID: 36269496
-
The Promoter Toolbox for Recombinant Gene Expression in Trichoderma reesei.Front Bioeng Biotechnol. 2018 Oct 11;6:135. doi: 10.3389/fbioe.2018.00135. eCollection 2018. Front Bioeng Biotechnol. 2018. PMID: 30364340 Free PMC article. Review.
-
Mn2+ modulates the expression of cellulase genes in Trichoderma reesei Rut-C30 via calcium signaling.Biotechnol Biofuels. 2018 Mar 1;11:54. doi: 10.1186/s13068-018-1055-6. eCollection 2018. Biotechnol Biofuels. 2018. PMID: 29507606 Free PMC article.
References
-
- Kubicek C. P., Fungi and Lignocellulose Biomass, (ed. Smith S.) 180–181 (Wiley, 2012).
-
- Peterson R. & Nevalainen H. Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 158, 58–68 (2012). - PubMed
-
- Forment J. V., Ramón D. & MacCabe A. P. Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr. Genet. 50, 217–224 (2006). - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases