Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan 28:7:18.
doi: 10.3389/fimmu.2016.00018. eCollection 2016.

Comparative Anatomy of Phagocytic and Immunological Synapses

Affiliations
Review

Comparative Anatomy of Phagocytic and Immunological Synapses

Florence Niedergang et al. Front Immunol. .

Abstract

The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of "phagocytic synapse." Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated.

Keywords: actin; endocytosis; exocytosis; immune receptor; immunological synapse; microtubules; phagocytosis; signal transduction.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic representation of the immunological synapse and the phagocytic cup formation. Immunological synapse formation is initiated by the engagement of TCRs on the surface of the T lymphocytes by peptide antigen–MHC complexes on the APC (left). Similarly, engagement of phagocytic receptors by multiple ligand binding on a target particle drives the formation of phagocytic synapses (right). In both settings, receptor engagement leads to F-actin polymerization and membrane deformation at contact sites. Polarization of the MTOC and microtubule network toward at the IS are important for the delivery of vesicles containing cytokines or lytic enzymes in helper or cytotoxic T cells, respectively, but also to deliver TCR-signaling components during immunological synapse formation. Microtubules also contribute to F-actin remodeling in complement-mediated phagocytosis. Internalization of cell surface TCRs by endocytosis and their focal recycling participate in the regulation of T cell activation. Finally, in either system, triggering of multiple signaling pathways downstream of the surface receptors leads to de novo transcriptional programs controlling cell survival, activation, and cytokine production.

Similar articles

Cited by

References

    1. Soares H, Lasserre R, Alcover A. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses. Immunol Rev (2013) 256(1):118–32.10.1111/imr.12110 - DOI - PubMed
    1. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature (2011) 472(7344):471–5.10.1038/nature10071 - DOI - PMC - PubMed
    1. Martinez-Martin N, Fernandez-Arenas E, Cemerski S, Delgado P, Turner M, Heuser J, et al. T cell receptor internalization from the immunological synapse is mediated by TC21 and RhoG GTPase-dependent phagocytosis. Immunity (2011) 35(2):208–22.10.1016/j.immuni.2011.06.003 - DOI - PMC - PubMed
    1. Dustin ML. The immunological synapse. Cancer Immunol Res (2014) 2(11):1023–33.10.1158/2326-6066.CIR-14-0161 - DOI - PMC - PubMed
    1. Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev (2009) 228(1):9–22.10.1111/j.1600-065X.2008.00745.x - DOI - PubMed

LinkOut - more resources