Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 8:5:3.
doi: 10.1186/s13756-016-0102-y. eCollection 2016.

Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan

Affiliations

Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan

Noriko Shinoda et al. Antimicrob Resist Infect Control. .

Abstract

Background: Multi-drug-resistant Mycobacterium tuberculosis has been an important problem in public health around the world. However, limited information about disinfectant-susceptibility of multi-drug-resistant strain of M. tuberculosis was available.

Findings: We studied susceptibility of several Japanese isolates of multi-drug-resistant M. tuberculosis against disinfectants, which are commonly used in clinical and research laboratories. We selected a laboratory reference strain (H37Rv) and eight Japanese isolates, containing five drug-susceptible strains and three multi-drug-resistant strains, and determined profiles of susceptibility against eight disinfectants. The M. tuberculosis strains were distinguished into two groups by the susceptibility profile. There was no relationship between multi-drug-resistance and disinfectant-susceptibility in the M. tuberculosis strains. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance.

Conclusions: Disinfectant-resistance is independent from multi-drug-resistance in M. tuberculosis. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance.

Keywords: Disinfectant; Microbicide; Multi-drug-resistant Mycobacterium tuberculosis.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Efficacy of disinfectants to M. tuberculosis stains. Each M. tuberculosis stain was exposed to the disinfectants for 1 min at room temperature. The bacteria were incubated in Middlebrook 7H9 broth for 14 days at 37 °C. Bacterial growth was measured by 16S rRNA targeted real-time qPCR. Control was not exposure by any disinfectants. Dashed line indicates the genome copy number on the day of inoculation. ADEG, alkyldiaminoethylglycine-HCl (0.2 % W/V); CG, chlorhexidine gluconate (0.1 % W/V); PI, povidine iodine (10 mg/ml as active iodine); BK, benzalkonium-HCl (0.1 % W/V); OX, oxydol (3 % W/V); CS, cresol soap (2 % V/V); EtOH, ethanol (70 % V/V); and BK + EtOH, benzalkonium-HCl (0.1 % W/V) + ethanol (70 % V/V). The results are expressed as means ± SD. *: p <0.05 (v.s. genome number on the day of inoculation). Black bars: the disinfectant inhibited growth of M. tuberculosis (effective disinfectant). White bars: the disinfectant did not inhibit growth of the bacteria (not effective)

Similar articles

Cited by

References

    1. Lawn SD, Zumla AI. Tuberculosis. Lancet. 2011;378:57–72. doi: 10.1016/S0140-6736(10)62173-3. - DOI - PubMed
    1. Zumla A, Chakaya J, Centis R, D’Ambrosio L, Mwaba P, Bates M, et al. Tuberculosis treatment and management? an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir Med. 2015;3(3):220–34. doi: 10.1016/S2213-2600(15)00063-6. - DOI - PubMed
    1. Best M, Sattar SA, Springthorpe VS, Kennedy ME. Efficacies of selected disinfectants against Mycobacterium tuberculosis. J Clin Microbiol. 1990;28:2234–9. - PMC - PubMed
    1. Rutala AW, Cole EC, Wannamaker NS, Weber DJ. Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants. Am J Med. 1991;91:S267–71. doi: 10.1016/0002-9343(91)90380-G. - DOI - PubMed
    1. Dauendorffer JN, Laurain C, Weber M, Dailloux M. Effect of Methodology on the Tuberculocidal Activity of a Glutaraldehyde-Based Disinfectant. Appl Environ Microb. 1999;65:4239–40. - PMC - PubMed

LinkOut - more resources