Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures
- PMID: 26859260
- PMCID: PMC4807853
- DOI: 10.1088/1741-2560/13/2/026015
Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures
Abstract
Objective: Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential (LFP) spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution.
Approach: We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from LFP spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two-dimensional spike patterns during seizures were different from those between seizures.
Main results: We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes.
Significance: We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state.
Figures











Similar articles
-
Millimeter-scale epileptiform spike patterns and their relationship to seizures.Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:761-4. doi: 10.1109/IEMBS.2011.6090174. Annu Int Conf IEEE Eng Med Biol Soc. 2011. PMID: 22254422 Free PMC article.
-
Microscale spatiotemporal dynamics during neocortical propagation of human focal seizures.Neuroimage. 2015 Nov 15;122:114-30. doi: 10.1016/j.neuroimage.2015.08.019. Epub 2015 Aug 14. Neuroimage. 2015. PMID: 26279211 Free PMC article.
-
Requirement of longitudinal synchrony of epileptiform discharges in the hippocampus for seizure generation: a pilot study.J Neurosurg. 2012 Mar;116(3):513-24. doi: 10.3171/2011.10.JNS11261. Epub 2011 Dec 16. J Neurosurg. 2012. PMID: 22175726
-
Epileptic seizures recorded with microelectrodes: A persistent multiscale gap between neuronal activity, micro-, and macro-LFP?Rev Neurol (Paris). 2025 Jun;181(6):503-524. doi: 10.1016/j.neurol.2025.01.414. Epub 2025 Apr 30. Rev Neurol (Paris). 2025. PMID: 40312160 Review.
-
Chronic invasive monitoring for identifying seizure foci in children.Neurosurg Clin N Am. 1995 Jul;6(3):491-504. Neurosurg Clin N Am. 1995. PMID: 7670323 Review.
Cited by
-
High-Density Porous Graphene Arrays Enable Detection and Analysis of Propagating Cortical Waves and Spirals.Sci Rep. 2018 Nov 20;8(1):17089. doi: 10.1038/s41598-018-35613-y. Sci Rep. 2018. PMID: 30459464 Free PMC article.
-
Spatiotemporal evolution of focal epileptiform activity from surface and laminar field recordings in cat neocortex.J Neurophysiol. 2018 Jun 1;119(6):2068-2081. doi: 10.1152/jn.00764.2017. Epub 2018 Feb 28. J Neurophysiol. 2018. PMID: 29488838 Free PMC article.
-
Multivariate regression methods for estimating velocity of ictal discharges from human microelectrode recordings.J Neural Eng. 2017 Aug;14(4):044001. doi: 10.1088/1741-2552/aa68a6. J Neural Eng. 2017. PMID: 28332484 Free PMC article.
-
Microscale dynamics of electrophysiological markers of epilepsy.Clin Neurophysiol. 2021 Nov;132(11):2916-2931. doi: 10.1016/j.clinph.2021.06.024. Epub 2021 Aug 2. Clin Neurophysiol. 2021. PMID: 34419344 Free PMC article.
References
-
- Bien CG, Schulze-Bonhage A, Soeder BM, Schramm J, Elger CE, Tiemeier H. Assessment of the long-term effects of epilepsy surgery with three different reference groups. Epilepsia. 2006;47:1865–9. - PubMed
-
- Bink H, Wagenaar JB, Viventi J. Data acquisition system for high resolution, multiplexed electrode arrays. Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference 1001-4 2013
-
- Bishop CM. Pattern Recognition and Machine Learning. New York: Springer Science/Business Media; 2006. p. 738.
-
- Bower MR, Buckmaster PS. Changes in granule cell firing rates precede locally recorded spontaneous seizures by minutes in an animal model of temporal lobe epilepsy. J Neurophysiol. 2008;99:2431–42. - PubMed
Publication types
MeSH terms
Grants and funding
- T90-DA022763/DA/NIDA NIH HHS/United States
- R01 NS048598/NS/NINDS NIH HHS/United States
- T32 NS054575/NS/NINDS NIH HHS/United States
- K01 ES025436/ES/NIEHS NIH HHS/United States
- R01-NS048598/NS/NINDS NIH HHS/United States
- R01-EY020765/EY/NEI NIH HHS/United States
- R01-NS041811/NS/NINDS NIH HHS/United States
- R01 EY020765/EY/NEI NIH HHS/United States
- T90 DA022763/DA/NIDA NIH HHS/United States
- R01 NS041811/NS/NINDS NIH HHS/United States
- K01-ES025436-01/ES/NIEHS NIH HHS/United States
- T32-NS054575/NS/NINDS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous