Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Mar-Apr;8(2):169-82.
doi: 10.1002/wsbm.1329. Epub 2016 Feb 9.

Heart valve regeneration: the need for systems approaches

Affiliations
Review

Heart valve regeneration: the need for systems approaches

Jenna Usprech et al. Wiley Interdiscip Rev Syst Biol Med. 2016 Mar-Apr.

Abstract

Tissue-engineered heart valves are promising alternatives to address the limitations of current valve replacements, particularly for growing children. Current heart valve tissue engineering strategies involve the selection of biomaterial scaffolds, cell types, and often in vitro culture conditions aimed at regenerating a valve for implantation and subsequent maturation in vivo. However, identifying optimal combinations of cell sources, biomaterials, and/or bioreactor conditions to produce functional, durable valve tissue remains a challenge. Despite some short-term success in animal models, attempts to recapitulate aspects of the native heart valve environment based on 'best guesses' of a limited number of regulatory factors have not proven effective. Better outcomes for valve tissue regeneration will likely require a systems-level understanding of the relationships between multiple interacting regulatory factors and their effects on cell function and tissue formation. Until recently, conventional culture methods have not allowed for multiple design parameters to be considered at once. Emerging microtechnologies are well suited to systematically probe multiple inputs, in combination, in high throughput and with great precision. When combined with statistical and network systems analyses, these microtechnologies have excellent potential to define multivariate signal-response relationships and reveal key regulatory pathways for robust functional tissue regeneration.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources