Associative plasticity in the human motor cortex is enhanced by concurrently targeting separate muscle representations with excitatory and inhibitory protocols
- PMID: 26864761
- PMCID: PMC4869502
- DOI: 10.1152/jn.00794.2015
Associative plasticity in the human motor cortex is enhanced by concurrently targeting separate muscle representations with excitatory and inhibitory protocols
Abstract
Paired associative stimulation (PAS) induces changes in the excitability of human sensorimotor cortex that outlast the procedure. PAS typically involves repeatedly pairing stimulation of a peripheral nerve that innervates an intrinsic hand muscle with transcranial magnetic stimulation over the representation of that muscle in the primary motor cortex. Depending on the timing of the stimuli (interstimulus interval of 25 or 10 ms), PAS leads to either an increase (PAS25) or a decrease (PAS10) in excitability. Both protocols, however, have been associated with an increase in excitability of nearby muscle representations not specifically targeted by PAS. Based on these spillover effects, we hypothesized that an additive, excitability-enhancing effect of PAS25 applied to one muscle representation may be produced by simultaneously applying PAS25 or PAS10 to a nearby representation. In different experiments prototypical PAS25 targeting the left thumb representation [abductor pollicis brevis (APB)] was combined with either PAS25 or PAS10 applied to the left little finger representation [abductor digiti minimi (ADM)] or, in a control experiment, with PAS10 also targeting the APB. In an additional control experiment PAS10 targeted both representations. The plasticity effects were quantified by measuring the amplitude of motor evoked potentials (MEPs) recorded before and after PAS. As expected, prototypical PAS25 was associated with an increase in MEP amplitude in the APB muscle. This effect was enhanced when PAS also targeted the ADM representation but only when a different interstimulus timing (PAS10) was used. These results suggest that PAS-induced plasticity is modified by concurrently targeting separate motor cortical representations with excitatory and inhibitory protocols.
Keywords: motor cortex; motor evoked potential; paired associative stimulation; plasticity; transcranial magnetic stimulation.
Copyright © 2016 the American Physiological Society.
Figures
References
-
- Belvisi D, Kassavetis P, Bologna M, Edwards MJ, Berardelli A, Rothwell JC. Associative plasticity in surround inhibition circuits in human motor cortex. Eur J Neurosci 40: 3704–3710, 2014. - PubMed
-
- Di Lazzaro V, Dileone M, Pilato F, Capone F, Musumeci G, Ranieri F, Ricci V, Bria P, Di Iorio R, de Waure C, Pasqualetti P, Profice P. Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol 105: 2150–2156, 2011. - PubMed
-
- Fischer M, Orth M. Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS. Brain Stimul 4: 202–209, 2011. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
