Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May;80(5):878-90.
doi: 10.1080/09168451.2015.1135043. Epub 2016 Feb 10.

Binding interactions of the peripheral stalk subunit isoforms from human V-ATPase

Affiliations

Binding interactions of the peripheral stalk subunit isoforms from human V-ATPase

Suhaila Rahman et al. Biosci Biotechnol Biochem. 2016 May.

Abstract

The mammalian peripheral stalk subunits of the vacuolar-type H(+)-ATPases (V-ATPases) possess several isoforms (C1, C2, E1, E2, G1, G2, G3, a1, a2, a3, and a4), which may play significant role in regulating ATPase assembly and disassembly in different tissues. To better understand the structure and function of V-ATPase, we expressed and purified several isoforms of the human V-ATPase peripheral stalk: E1G1, E1G2, E1G3, E2G1, E2G2, E2G3, C1, C2, H, a1NT, and a2NT. Here, we investigated and characterized the isoforms of the peripheral stalk region of human V-ATPase with respect to their affinity and kinetics in different combination. We found that different isoforms interacted in a similar manner with the isoforms of other subunits. The differences in binding affinities among isoforms were minor from our in vitro studies. However, such minor differences from the binding interaction among isoforms might provide valuable information for the future structural-functional studies of this holoenzyme.

Keywords: V-ATPase; affinity; human peripheral stalk; subunit isoform; surface plasmon resonance.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms