Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar;146(3):532-41.
doi: 10.3945/jn.115.221267. Epub 2016 Feb 10.

L-Citrulline Supplementation Enhances Fetal Growth and Protein Synthesis in Rats with Intrauterine Growth Restriction

Affiliations
Free article

L-Citrulline Supplementation Enhances Fetal Growth and Protein Synthesis in Rats with Intrauterine Growth Restriction

Aurélie Bourdon et al. J Nutr. 2016 Mar.
Free article

Abstract

Background: Intrauterine growth restriction (IUGR) results from either maternal undernutrition or impaired placental blood flow, exposing offspring to increased perinatal mortality and a higher risk of metabolic syndrome and cardiovascular disease during adulthood. l-Citrulline is a precursor of l-arginine and nitric oxide (NO), which regulates placental blood flow. Moreover, l-citrulline stimulates protein synthesis in other models of undernutrition.

Objective: The aim of the study was to determine whether l-citrulline supplementation would enhance fetal growth in a model of IUGR induced by maternal dietary protein restriction.

Methods: Pregnant rats were fed either a control (20% protein) or a low-protein (LP; 4% protein) diet. LP dams were randomly allocated to drink tap water either as such or supplemented with l-citrulline (2 g · kg(-1) · d(-1)), an isonitrogenous amount of l-arginine, or nonessential l-amino acids (NEAAs). On day 21 of gestation, dams received a 2-h infusion of l-[1-(13)C]-valine until fetuses were extracted by cesarean delivery. Isotope enrichments were measured in free amino acids and fetal muscle, liver, and placenta protein by GC-mass spectrometry.

Results: Fetal weight was ∼29% lower in the LP group (3.82 ± 0.06 g) than in the control group (5.41 ± 0.10 g) (P < 0.001). Regardless of supplementation, fetal weight remained below that of control fetuses. Yet, compared with the LP group, l-citrulline and l-arginine equally increased fetal weight to 4.15 ± 0.08 g (P < 0.05) and 4.13 ± 0.1 g (P < 0.05 compared with LP), respectively, whereas NEAA did not (4.05 ± 0.05 g; P = 0.07). Fetal muscle protein fractional synthesis rate was 35% lower in the LP fetuses (41% ± 11%/d) than in the control (61% ± 13%/d) fetuses (P < 0.001) and was normalized by l-citrulline (56% ± 4%/d; P < 0.05 compared with LP, NS compared with control) and not by other supplements. Urinary nitrite and nitrate excretion was lower in the LP group (6.4 ± 0.8 μmol/d) than in the control group (17.9 ± 1.1 μmol/d; P < 0.001) and increased in response to l-citrulline or l-arginine (12.1 ± 2.2 and 10.6 ± 0.9 μmol/d; P < 0.05), whereas they did not in the LP + NEAA group.

Conclusion: l-Citrulline increases fetal growth in a model of IUGR, and the effect may be mediated by enhanced fetal muscle protein synthesis and/or increased NO production.

Keywords: amino acids; developmental origins of health and disease; l-arginine; muscle; nitric oxide; obstetrics; perinatal nutrition; placenta; protein metabolism; stable isotopes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms