Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 7;18(9):6569-79.
doi: 10.1039/c5cp06932g.

Magneto-thermally activated spin-state transition in La0.95Ca0.05CoO3: magnetically-tunable dipolar glass and giant magneto-electricity

Affiliations

Magneto-thermally activated spin-state transition in La0.95Ca0.05CoO3: magnetically-tunable dipolar glass and giant magneto-electricity

Suchita Pandey et al. Phys Chem Chem Phys. .

Abstract

The magneto-dielectric spectroscopy of La0.95Ca0.05CoO3 covering the crossover of spin states reveals the strong coupling of its spin and dipolar degrees of freedom. The signature of the spin-state transition at 30 K clearly manifests in the magnetization data at a 1 Tesla optimal field. Our Co L3,2-edge X-ray absorption spectrum on the doped specimen is consistent with its suppressed low-to-intermediate spin-state transition temperature at ∼30 K compared to ∼150 K, documented for pure LaCoO3. The dispersive activation step in the dielectric constant with the associated relaxation peak in imaginary permittivity characterize the allied influence of coexistent spin-states on the dielectric character. Dipolar relaxation in the low-spin regime below the transition temperature is partly segmental (Vogel-Fulcher-Tamman (VFT) kinetics) and features magnetic-field tunability, whereas in the low/intermediate-spin disordered state above ∼30 K, it is uncorrelated (Arrhenic kinetics) and almost impervious to the magnetic field H. Kinetics-switchover defines the dipolar-glass transition temperature Tg(H) (=27 K|0T), below which their magneto-thermally-activated cooperative relaxations freeze out by the VFT temperature T0(H) (=15 K|0T). An applied magnetic field facilitates thermal activation in toggling the low spins up into the intermediate states. Consequently, the downsized dipolar-glass segments in the low-spin state and the independent dipoles in the intermediate state exhibit accelerated dynamics. A critical 5 Tesla field collapses the entire relaxation kinetics into a single Arrhenic behaviour, signaling that the dipolar glass is completely devitrified under all higher fields. The magneto-electricity (ME) spanning sizeable thermo-spectral range registers diverse signatures here in kinetic, spectral, and field behaviors, in contrast to the static/perturbative ME observed close to the spin-ordering in typical multiferroics. Intrinsic magneto-dielectricity (50%) along with vanishing magneto-loss is obtained at (27 K/50 kHz)9T. The sub-linear deviant and field-hysteretic split seen in above 4 Tesla suggests the emergence of robust dipoles organized into nano-clusters, induced by the internally-generated high magneto-electric field. An elaborate ω-T multi-dispersions diagram maps the rich variety of phase/response patterns, revealing highly-interacting magnetic and electric moments in the system.

PubMed Disclaimer

Similar articles

LinkOut - more resources