Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 11;11(2):e0149001.
doi: 10.1371/journal.pone.0149001. eCollection 2016.

Intrapericardial Delivery of Cardiosphere-Derived Cells: An Immunological Study in a Clinically Relevant Large Animal Model

Affiliations

Intrapericardial Delivery of Cardiosphere-Derived Cells: An Immunological Study in a Clinically Relevant Large Animal Model

Rebeca Blázquez et al. PLoS One. .

Abstract

Introduction: The intrapericardial delivery has been defined as an efficient method for pharmacological agent delivery. Here we hypothesize that intrapericardial administration of cardiosphere-derived cells (CDCs) may have an immunomodulatory effect providing an optimal microenvironment for promoting cardiac repair. To our knowledge, this is the first report studying the effects of CDCs for myocardial repair using the intrapericardial delivery route.

Material and methods: CDCs lines were isolated, expanded and characterized by flow cytometry and PCR. Their differentiation ability was determined using specific culture media and differential staining. 300,000 CDCs/kg were injected into the pericardial space of a swine myocardial infarcted model. Magnetic resonance imaging, biochemical analysis of pericardial fluid and plasma, cytokine measurements and flow cytometry analysis were performed.

Results: Our results showed that, phenotype and differentiation behavior of porcine CDCs were equivalent to previously described CDCs. Moreover, the intrapericardial administration of CDCs fulfilled the safety aspects as non-adverse effects were reported. Finally, the phenotypes of resident lymphocytes and TH1 cytokines in the pericardial fluid were significantly altered after CDCs administration.

Conclusions: The pericardial fluid could be considered as a safe and optimal vehicle for CDCs administration. The observed changes in the studied immunological parameters could exert a modulation in the inflammatory environment of infarcted hearts, indirectly benefiting the endogenous cardiac repair.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Experimental design.
Seven weeks after infarct model creation, CDCs were intrapericardially injected. 30 days after CDCs administration, animals were euthanized. MRI was performed on days 0 (before CDCs administration), 7 and 30. On days 0 and 30, blood and pericardial fluid samples were collected for flow cytometry, biochemical analysis and cytokine determinations.
Fig 2
Fig 2. Characterization of cardiosphere-derived cells.
CDCs were isolated from cardiac tissue explants of healthy pigs. The figure A shows explants in culture with some fibroblast-like cells migrating from them (A.I), cardiospheres with CDCs migrating from them (A.II) and CDCs in culture (A.III). Figure B shows the phenotypic analysis of CDCs by flow cytometry. Representative histograms together with the expression levels are shown. The expression level of cell surface markers is represented as Mean Relative Fluorescence Intensity (MRFI), which is calculated by dividing the Mean Fluorescent Intensity (MFI) (black lined histogram) by its negative control (grey lined histogram). Figure C corresponds to gene expression analysis by conventional RT-PCR. Mean ± SD of three different experiments are shown. Data are expressed as expression percentage referred to ACTB, used as control. The relative quantification was made by measuring the brightness intensity of each band with GeneSnap software. A representative image of one of the experiments is shown above. Figure D shows the differentiation potential of CDCs. Cells were maintained for 21 days with standard medium (control) (D.I) or with specific differentiation media for adipogenic, chondrogenic and osteogenic lineages. Differentiation was evidenced by specific stainings: Oil Red O for adipocytes (D.II), Alcian Blue for chondrocytes (D.III) and Alizarin Red S for osteocytes (D.IV).
Fig 3
Fig 3. Lymphocyte subsets distribution in peripheral blood and pericardial fluid.
Pericardial fluid lymphocytes (PFLs) and peripheral blood lymphocytes (PBLs) were collected before CDCs administration and 30 days post-administration for flow cytometry analysis. * Statistically significant differences (p<0.05) between different time points (n = 4). † Statistically significant differences (p<0.05) between PFLs and PBLs in the same time point (n = 4).
Fig 4
Fig 4. Cytokines levels in pericardial fluid and plasma samples.
Cytokines levels were determined before CDCs administration and 30 days post-administration using the Luminex xMAP technology. * Statistically significant differences (p<0.05) between different time points (n = 4). † Statistically significant differences (p<0.05) between PF and plasma in the same time point (n = 4).
Fig 5
Fig 5. Cardiac magnetic resonance imaging.
Cardiac function was measured with cardiac magnetic resonance imaging. The panel A represent a representative image of the measurement of the thickness of the infarcted (septum) and healthy lateral free wall in end diastolic short axis views. B and C graphics represent the infarct area and the ejection fraction measurements, respectively, obtained on days 0 (before CDCs administration), 7 and 30. The lower boundary of the box indicates the 25th percentile and the upper boundary the 75th percentile. Bars above and below the box indicate the 90th and 10th percentiles. The line within the box marks the median. No statistically significant differences were found between groups (n = 4).

Similar articles

Cited by

References

    1. Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109: 923–940. 10.1161/CIRCRESAHA.111.243147 - DOI - PMC - PubMed
    1. Sheng CC, Zhou L, Hao J. Current stem cell delivery methods for myocardial repair. BioMed Res Int. 2013;2013: 547902 10.1155/2013/547902 - DOI - PMC - PubMed
    1. Mazo M, Gavira JJ, Pelacho B, Prosper F. Adipose-derived stem cells for myocardial infarction. J Cardiovasc Transl Res. 2011;4: 145–153. 10.1007/s12265-010-9246-y - DOI - PubMed
    1. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PloS One. 2012;7: e47559 10.1371/journal.pone.0047559 - DOI - PMC - PubMed
    1. Trivedi P, Tray N, Nguyen T, Nigam N, Gallicano GI. Mesenchymal stem cell therapy for treatment of cardiovascular disease: helping people sooner or later. Stem Cells Dev. 2010;19: 1109–1120. 10.1089/scd.2009.0465 - DOI - PubMed

Publication types

MeSH terms