Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 11;11(2):e0148788.
doi: 10.1371/journal.pone.0148788. eCollection 2016.

Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient

Affiliations

Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient

Enrique G de la Riva et al. PLoS One. .

Abstract

Leaf mass per area (LMA) is a morphological trait widely used as a good indicator of plant functioning (i.e. photosynthetic and respiratory rates, chemical composition, resistance to herbivory, etc.). The LMA can be broken down into the leaf density (LD) and leaf volume to area ratio (LVA or thickness), which in turn are determined by anatomical tissues and chemical composition. The aim of this study is to understand the anatomical and chemical characteristics related to LMA variation in species growing in the field along a water availability gradient. We determined LMA and its components (LD, LVA and anatomical tissues) for 34 Mediterranean (20 evergreen and 14 deciduous) woody species. Variation in LMA was due to variation in both LD and LVA. For both deciduous and evergreen species LVA variation was strongly and positively related with mesophyll volume per area (VA or thickness), but for evergreen species positive relationships of LVA with the VA of epidermis, vascular plus sclerenchyma tissues and air spaces were found as well. The leaf carbon concentration was positively related with mesophyll VA in deciduous species, and with VA of vascular plus sclerenchymatic tissues in evergreens. Species occurring at the sites with lower water availability were generally characterised by a high LMA and LD.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1
A) Linear regressions of leaf mass per area (LMA) with leaf volume per area (LVA or thickness) and leaf density (LD), for deciduous species (dark line and circles), evergreens (red line and empty red circles) and all the species (dashed line). The level of significance is expressed as follows: * P < 0.05, ** P < 0.01, *** P < 0.001. Box plots (median and 1st and 3rd quartiles) of deciduous vs. evergreen species are included in the margins; the significant results are based on the phylogenetic generalised least squares model (PGLS). The results based on PGLS can be found in S3 Table, Supporting Information. Whiskers show the minimum and maximum values that fall within 1.5x the length of the box away from the interquartile range; data further away are shown as outliers. B) Decomposition of the total variability explained by LVA and LD.
Fig 2
Fig 2
A) Linear regressions of leaf volume per area (LVA or thickness) with anatomical tissues, for deciduous species (dark line and circles), evergreens (red line and empty red circles) and all the species (dashed line). In brackets the slopes of the regression lines are given. The level of significance is expressed as follows: * P < 0.05, ** P < 0.01, *** P < 0.001. Box plots (median and 1st and 3rd quartiles) of deciduous vs. evergreen species are included in the margins; the significant results are based on the phylogenetic generalised least squares model (PGLS). The results based on PGLS can be found in S3 Table, Supporting Information. Whiskers show the minimum and maximum values that fall within 1.5x the length of the box away from the interquartile range; data further away are shown as outliers. B) Decomposition of the total variability explained by anatomical tissues, without covariations.
Fig 3
Fig 3
A) Linear regressions of leaf mass area (LMA) and mesophyll with leaf carbon concentration (LCC) and leaf nitrogen concentration (LNC), for deciduous species (dark line and circles), evergreens (red line and empty red circles) and all the species (dashed line). In brackets the slopes of the regression lines are given. The level of significance is expressed as follows: * P < 0.05, ** P < 0.01, *** P < 0.001, + is shown when the relationship is phylogenetically dependent. Box plots (median and 1st and 3rd quartiles) of deciduous vs. evergreen species are included in the margins; the significant results are based on the phylogenetic generalised least squares model (PGLS). The results based on PGLS can be found in S3 Table, Supporting Information. Whiskers show the minimum and maximum values that fall within 1.5x the length of the box away from the interquartile range; data further away are shown as outliers.
Fig 4
Fig 4. Correlation network for morphological (white), anatomical (blue) and chemical traits (grey), describing the interrelations with LMA (yellow).
Blue lines indicate positive correlations and red lines negative correlations. Dashed lines indicate phylogenetic independence. The correlation coefficient is shown. Thin lines, 0.5<|r|<0.707 (0.252<0.50); intermediate lines, 0.707<|r|< 0.866 (0.50<R2<0.75); bold lines, |r|>0.866 (R2>0.75).
Fig 5
Fig 5. Linear regressions between soil water content and morphological traits (leaf mass per area, LMA and leaf density, LD) for deciduous species (dark line and circles), evergreens (red line and empty red circles) and all the species (dashed line).
The level of significance is expressed as follows: + 0.05 < P < 0.10, ** P < 0.01, *** P < 0.001.

References

    1. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature 2004; 428: 821–827. - PubMed
    1. Garnier E, Navas ML. A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agronomy for Sustainable Development 2012; 32: 365–399.
    1. Sack L, Scoffoni C, John G P, Poorter H, Mason CM, Mendez-Alonzo R, et al. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany 2013; 64: 4053–4080. 10.1093/jxb/ert316 - DOI - PubMed
    1. Reich PB. The worldwide ‘fast–slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 2014; 102: 275–301.
    1. Lopez-Iglesias B, Villar R, Poorter L. Functional traits predict drought performance and distribution of Mediterranean woody species. Acta Oecologica 2014; 56: 10–18. 10.1016/j.actao.2014.01.003 - DOI

Publication types