Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016:1398:331-44.
doi: 10.1007/978-1-4939-3356-3_27.

Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca(2+) Transients in Plants

Affiliations

Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca(2+) Transients in Plants

Fabian Trempel et al. Methods Mol Biol. 2016.

Abstract

Ca(2+) is a secondary messenger involved in early signaling events triggered in response to a plethora of biotic and abiotic stimuli. In plants, environmental cues that induce cytosolic Ca(2+) elevation include touch, reactive oxygen species, cold shock, and salt or osmotic stress. Furthermore, Ca(2+) signaling has been implicated in early stages of plant-microbe interactions of both symbiotic and antagonistic nature. A long-standing hypothesis is that there is information encoded in the Ca(2+) signals (so-called Ca(2+) signatures) to enable plants to differentiate between these stimuli and to trigger the appropriate cellular response. Qualitative and quantitative measurements of Ca(2+) signals are therefore needed to dissect the responses of plants to their environment. Luminescence produced by the Ca(2+) probe aequorin upon Ca(2+) binding is a widely used method for the detection of Ca(2+) transients and other changes in Ca(2+) concentrations in cells or organelles of plant cells. In this chapter, using microbe-associated molecular patterns (MAMPs), such as the bacterial-derived flg22 or elf18 peptides as stimuli, a protocol for the quantitative measurements of Ca(2+) fluxes in apoaequorin-expressing seedlings of Arabidopsis thaliana in 96-well format is described.

Keywords: Aequorin; Ca2+ measurements; Microbe-associated molecular pattern (MAMP).

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources