Physiological roles of the mitochondrial permeability transition pore
- PMID: 26868013
- PMCID: PMC4981558
- DOI: 10.1007/s10863-016-9652-1
Physiological roles of the mitochondrial permeability transition pore
Abstract
Neurons experience high metabolic demand during such processes as synaptic vesicle recycling, membrane potential maintenance and Ca2+ exchange/extrusion. The energy needs of these events are met in large part by mitochondrial production of ATP through the process of oxidative phosphorylation. The job of ATP production by the mitochondria is performed by the F1FO ATP synthase, a multi-protein enzyme that contains a membrane-inserted portion, an extra-membranous enzymatic portion and an extensive regulatory complex. Although required for ATP production by mitochondria, recent findings have confirmed that the membrane-confined portion of the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane, uncoupling of oxidative phosphorylation and cell death. Recent advances in understanding the molecular components of mPTP and its regulatory mechanisms have determined that decreased uncoupling occurs in states of enhanced mitochondrial efficiency; relative closure of mPTP therefore contributes to cellular functions as diverse as cardiac development and synaptic efficacy.
Keywords: ATP synthase; Mitochondria; Permeability transition pore; Synaptic plasticity; Synaptic transmission.
Figures
References
-
- Alavian KN, Li H, Collis L, Bonanni L, Zeng L, Sacchetti S, Lazrove E, Nabili P, Flaherty B, Graham M, Chen Y, Messerli SM, Mariggio MA, Rahner C, McNay E, Shore GC, Smith PJ, Hardwick JM, Jonas EA. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol. 2011;13:1224–1233. doi: 10.1038/ncb2330. - DOI - PMC - PubMed
-
- Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA, Jr, Jonas EA. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A. 2014;111:10580–10585. doi: 10.1073/pnas.1401591111. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
