Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Mar;45(3):271-81.
doi: 10.1097/SHK.0000000000000463.

MITOCHONDRIAL FUNCTION IN SEPSIS

Affiliations
Review

MITOCHONDRIAL FUNCTION IN SEPSIS

Nishkantha Arulkumaran et al. Shock. 2016 Mar.

Abstract

Mitochondria are an essential part of the cellular infrastructure, being the primary site for high-energy adenosine triphosphate production through oxidative phosphorylation. Clearly, in severe systemic inflammatory states, like sepsis, cellular metabolism is usually altered, and end organ dysfunction is not only common, but also predictive of long-term morbidity and mortality. Clearly, interest is mitochondrial function both as a target for intracellular injury and response to extrinsic stress have been a major focus of basic science and clinical research into the pathophysiology of acute illness. However, mitochondria have multiple metabolic and signaling functions that may be central in both the expression of sepsis and its ultimate outcome. In this review, the authors address five primary questions centered on the role of mitochondria in sepsis. This review should be used both as a summary source in placing mitochondrial physiology within the context of acute illness and as a focal point for addressing new research into diagnostic and treatment opportunities these insights provide.

PubMed Disclaimer

Conflict of interest statement

Declaration of interest

CD and HG have no disclosures. NA received a research fellowship from the Wellcome Trust. BZ has received research support from NIH (HL120877 and HL074316). PS has received research support from NIH (HL35440 and HL122062). MRP has received research support from Edwards LlifeSciences and NIH (HL07820, NR013912, H L120877 and HL074316). MP has received consulting fees from Masimo. JK has received consulting fees from Abbott, Aethlon, Alere, Alung, AM Pharma, Astute Medical, Atox Bio, Baxter, Cytosorbents, venBio, Gambro, Grifols, Roche, Spectral Diagnostics, Sangart, and Siemens. JK has also received research grants from Alere, Astute Medical, Atox Bio, Bard, Baxter, Cytosorbents, Gambro, Grifols, Kaneka, and Spectral Diagnostics, and has licensed technologies through the University of Pittsburgh to Astute Medical, Cytosorbents and Spectral Diagnostics. AG has received consulting fees from Fresenius Medical Care. PM has received consulting fees from AM Pharma, Abbvie, FAST Diagnostics. He has also received research funding from Abbott, Alere, EKF Diagnostics. CR has received consulting fees from AM Pharma, Astute Medical, Baxter, Gambro, Spectral Diagnostics, GE, FMC and ASAHI.

Figures

Figure 1
Figure 1

References

    1. Boekstegers P, Weidenhofer S, Pilz G, Werdan K. Peripheral oxygen availability within skeletal muscle in sepsis and septic shock: comparison to limited infection and cardiogenic shock. Infection. 1991;19:317–323. - PubMed
    1. Sair M, Etherington PJ, Peter Winlove C, Evans TW. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med. 2001;29:1343–1349. - PubMed
    1. Carre JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, Suliman HB, Piantadosi CA, Mayhew TM, Breen P, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010;182:745–751. - PMC - PubMed
    1. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–223. - PubMed
    1. Vanasco V, Magnani ND, Cimolai MC, Valdez LB, Evelson P, Boveris A, Alvarez S. Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential. J Bioenerg Biomembr. 2012;44:243–252. - PubMed

Publication types