The Na+ cycle of extreme alkalophiles: a secondary Na+/H+ antiporter and Na+/solute symporters
- PMID: 2687260
- DOI: 10.1007/BF00762685
The Na+ cycle of extreme alkalophiles: a secondary Na+/H+ antiporter and Na+/solute symporters
Abstract
Extremely alkalophilic bacteria that grow optimally at pH 10.5 and above are generally aerobic bacilli that grow at mesophilic temperatures and moderate salt levels. The adaptations to alkalophily in these organisms may be distinguished from responses to combined challenges of high pH together with other stresses such as salinity or anaerobiosis. These alkalophiles all possess a simple and physiologically crucial Na+ cycle that accomplishes the key task of pH homeostasis. An electrogenic, secondary Na+/H+ antiporter is energized by the electrochemical proton gradient formed by the proton-pumping respiratory chain. The antiporter facilitates maintenance of a pHin that is two or more pH units lower than pHout at optimal pH values for growth. It also largely converts the initial electrochemical proton gradient formed by respiration into an electrochemical sodium gradient that energizes motility as well as a plethora of Na+ solute symporters. These symporters catalyze solute accumulation and, importantly, reentry of Na+. The extreme nonmarine alkalophiles exhibit no primary sodium pumping dependent upon either respiration or ATP. ATP synthesis is not part of their Na+ cycle. Rather, the specific details of oxidative phosphorylation in these organisms are an interesting analogue of the same process in mitochondria, and may utilize some common features to optimize energy transduction.
Similar articles
-
pH homeostasis and bioenergetic work in alkalophiles.FEMS Microbiol Rev. 1990 Jun;6(2-3):271-8. doi: 10.1111/j.1574-6968.1990.tb04100.x. FEMS Microbiol Rev. 1990. PMID: 2167108 Review.
-
Bioenergetics of alkalophilic bacteria.J Membr Biol. 1986;89(2):113-25. doi: 10.1007/BF01869707. J Membr Biol. 1986. PMID: 2871195
-
Presence of a nonmetabolizable solute that is translocated with Na+ enhances Na+-dependent pH homeostasis in an alkalophilic Bacillus.J Biol Chem. 1985 Apr 10;260(7):4055-8. J Biol Chem. 1985. PMID: 3980467
-
Na(+)-coupled alternative to H(+)-coupled primary transport systems in bacteria.Bioessays. 1991 Sep;13(9):463-8. doi: 10.1002/bies.950130906. Bioessays. 1991. PMID: 1665692 Review.
-
Properties of two different Na+/H+ antiport systems in alkaliphilic Bacillus sp. strain C-125.J Bacteriol. 1994 Nov;176(21):6464-9. doi: 10.1128/jb.176.21.6464-6469.1994. J Bacteriol. 1994. PMID: 7961397 Free PMC article.
Cited by
-
Organization and nucleotide sequence of the atp genes encoding the ATP synthase from alkaliphilic Bacillus firmus OF4.Mol Gen Genet. 1991 Oct;229(2):292-300. doi: 10.1007/BF00272169. Mol Gen Genet. 1991. PMID: 1833620
-
Monensin Inhibition of Na+-Dependent HCO3- Transport Distinguishes It from Na+-Independent HCO3- Transport and Provides Evidence for Na+/HCO3- Symport in the Cyanobacterium Synechococcus UTEX 625.Plant Physiol. 1994 Apr;104(4):1419-1428. doi: 10.1104/pp.104.4.1419. Plant Physiol. 1994. PMID: 12232177 Free PMC article.
-
Proton-coupled bioenergetic processes in extremely alkaliphilic bacteria.J Bioenerg Biomembr. 1992 Dec;24(6):587-99. doi: 10.1007/BF00762351. J Bioenerg Biomembr. 1992. PMID: 1334072 Review.
-
Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters.J Exp Biol. 2009 Jun;212(Pt 11):1620-9. doi: 10.1242/jeb.031534. J Exp Biol. 2009. PMID: 19448072 Free PMC article. Review.
-
Motility and chemotaxis in alkaliphilic Bacillus species.Future Microbiol. 2009 Nov;4(9):1137-49. doi: 10.2217/fmb.09.76. Future Microbiol. 2009. PMID: 19895217 Free PMC article. Review.