Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989 Sep;36(3):403-11.
doi: 10.1038/ki.1989.209.

Electroneutral NaCl absorption in the proximal tubule: mechanisms of apical Na-coupled transport

Affiliations
Free article
Review

Electroneutral NaCl absorption in the proximal tubule: mechanisms of apical Na-coupled transport

C A Berry et al. Kidney Int. 1989 Sep.
Free article

Abstract

The proximal tubule utilizes multiple mechanisms to reabsorb filtered NaCl. In the early PCT electrogenic Na-coupled organic solute transport generates a lumen-negative PD which drives Cl- passively through the paracellular pathway. Preferential reabsorption of HCO3- and organic solutes in the early PCT elevates luminal Cl- concentration, which in the late PCT provides the driving force for passive reabsorption of both Na+ and Cl-. However, most of the NaCl reabsorbed in the PCT is mediated by an electroneutral mechanism in which equivalent amounts of Na+ and Cl- move transcellularly across apical and basolateral membranes. In the mammalian PCT the evidence overwhelmingly supports parallel Na+-H+ and Cl- -base exchangers as the mechanism by which Na+ and Cl- cross the apical membrane during electroneutral, transcellular NaCl reabsorption. OH-, HCO3-, formate and Ox- have all been suggested to be the anion exchanged for Cl-. An important physiologic contribution of formate has been shown in in vitro microperfusion studies [29]. Measurements of intracellular pH using fluorescent dyes [59, 60] support a quantitatively important role for formate and argue against a large contribution of OH- and HCO3-. The absence of a role for HCO3- is also supported by in vivo microperfusion studies using methoxazolamide [53]. The potential role of oxalate requires physiologic evaluation. To date, the experimental data suggest that Cl- -formate is probably the predominant anion exchange mechanism. One may ask why, in a process so critical as NaCl reabsorption, the tubule would choose to use a "toxin" rather than one of those ions more familiar to renal physiologists?(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

LinkOut - more resources