Copper-Catalyzed Intramolecular Oxidative Amination of Unactivated Internal Alkenes
- PMID: 26878987
- DOI: 10.1002/chem.201600329
Copper-Catalyzed Intramolecular Oxidative Amination of Unactivated Internal Alkenes
Abstract
A copper-catalyzed oxidative amination of unactivated internal alkenes has been developed. The Wacker-type oxidative alkene amination reaction is traditionally catalyzed by a palladium through a mechanism involving aminopalladation and β-hydride elimination. Replacing the precious and scarce palladium with a cheap and abundant copper for this transformation has been challenging because of the difficulty associated with the aminocupration of internal alkenes. The combination of a simple copper salt, without additional ligand, as the catalyst and Dess-Martin periodinane as the oxidant, promotes efficiently the oxidative amination of allylic carbamates and ureas bearing di- and trisubstituted alkenes leading to oxazolidinones and imidazolidinones. Preliminary mechanistic studies suggested a hybrid radical-organometallic mechanism involving an amidyl radical cyclization to form the key C-N bond.
Keywords: copper; cyclization; oxidation; radicals; synthetic methods.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources