Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Apr 20;11(8):1183-93.
doi: 10.1002/asia.201600034. Epub 2016 Mar 24.

Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells

Affiliations
Review

Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells

Chao Shen et al. Chem Asian J. .

Abstract

Quantum-dot-sensitized solar cells (QDSCs) are promising solar-energy-conversion devices, as low-cost alternatives to the prevailing photovoltaic technologies. Compared with molecular dyes, nanocrystalline quantum dot (QD) light absorbers exhibit higher molar extinction coefficients and a tunable photoresponse. However, the power-conversion efficiencies (PCEs) of QDSCs are generally below 9.5 %, far behind their molecular sensitizer counterparts (up to 13 %). These low PCEs have been attributed to a large free-energy loss during sensitizer regeneration, energy loss during the charge-carrier transport and transfer processes, and inefficient charge separation at the QD/electrolyte interfaces, and various interfacial engineering strategies for enhancing the PCE and cell stability have been reported. Herein, we review recent progress in the interfacial engineering of QDSCs and discuss future prospects for the development of highly efficient and stable QDSCs.

Keywords: nanostructures; quantum dots; renewable resources; sensitizers; solar cells.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources