Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr;28(2):142-7.
doi: 10.1097/GCO.0000000000000257.

Targeting the programmed cell death-1 pathway in breast and ovarian cancer

Affiliations

Targeting the programmed cell death-1 pathway in breast and ovarian cancer

Leisha A Emens et al. Curr Opin Obstet Gynecol. 2016 Apr.

Abstract

Purpose of review: Immune checkpoint blockade is changing cancer therapy. Targeting the programmed cell death-1 (PD-1) pathway releases T cells from inhibitory signals within the tumor microenvironment, thereby activating a latent antitumor immune response. Here, we review the biology underlying the activity of PD-1/programmed cell death-ligand 1 (PD-L1) antagonists, and data describing their clinical activity in breast and ovarian cancer.

Recent findings: Several antagonists of PD-1 and PD-L1 have been tested in breast and ovarian cancer. These drugs are generally well tolerated, with some immune-related adverse events that are typically easily managed. Objective response rates generally range from about 10 to 20% in both breast cancer and ovarian cancer, with durable responses noted in multiple trials. Selecting patients with PD-L1 expression by cells within the tumor microenvironment appears to enrich for responses. These agents are under accelerated development based on these promising early data.

Summary: Monoclonal antibody-based blockade of the PD-1 pathway results in objective and durable clinical responses in a subset of patients with breast or ovarian cancers, particularly those with PD-L1-positive cells within the tumor microenvironment. Current priorities are to refine biomarkers of therapeutic response, and to develop combination immunotherapy strategies that integrate PD-1/PD-L1 antagonists with both standard and immune-based cancer therapies to increase efficacy.

PubMed Disclaimer

Publication types