Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 17;8(326):326ra22.
doi: 10.1126/scitranslmed.aaf1475.

Long noncoding RNA Chast promotes cardiac remodeling

Affiliations

Long noncoding RNA Chast promotes cardiac remodeling

Janika Viereck et al. Sci Transl Med. .

Abstract

Recent studies highlighted long noncoding RNAs (lncRNAs) to play an important role in cardiac development. However, understanding of lncRNAs in cardiac diseases is still limited. Global lncRNA expression profiling indicated that several lncRNA transcripts are deregulated during pressure overload-induced cardiac hypertrophy in mice. Using stringent selection criteria, we identified Chast (cardiac hypertrophy-associated transcript) as a potential lncRNA candidate that influences cardiomyocyte hypertrophy. Cell fractionation experiments indicated that Chast is specifically up-regulated in cardiomyocytes in vivo in transverse aortic constriction (TAC)-operated mice. In accordance, CHAST homolog in humans was significantly up-regulated in hypertrophic heart tissue from aortic stenosis patients and in human embryonic stem cell-derived cardiomyocytes upon hypertrophic stimuli. Viral-based overexpression of Chast was sufficient to induce cardiomyocyte hypertrophy in vitro and in vivo. GapmeR-mediated silencing of Chast both prevented and attenuated TAC-induced pathological cardiac remodeling with no early signs on toxicological side effects. Mechanistically, Chast negatively regulated Pleckstrin homology domain-containing protein family M member 1 (opposite strand of Chast), impeding cardiomyocyte autophagy and driving hypertrophy. These results indicate that Chast can be a potential target to prevent cardiac remodeling and highlight a general role of lncRNAs in heart diseases.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources