Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jun;37(6):7021-31.
doi: 10.1007/s13277-016-4911-7. Epub 2016 Feb 18.

Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future

Affiliations
Review

Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future

Adam M Hirst et al. Tumour Biol. 2016 Jun.

Abstract

The field of plasma medicine has seen substantial advances over the last decade, with applications developed for bacterial sterilisation, wound healing and cancer treatment. Low temperature plasmas (LTPs) are particularly suited for medical purposes since they are operated in the laboratory at atmospheric pressure and room temperature, providing a rich source of reactive oxygen and nitrogen species (RONS). A great deal of research has been conducted into the role of reactive species in both the growth and treatment of cancer, where long-established radio- and chemo-therapies exploit their ability to induce potent cytopathic effects. In addition to producing a plethora of RONS, LTPs can also create strong electroporative fields. From an application perspective, it has been shown that LTPs can be applied precisely to a small target area. On this basis, LTPs have been proposed as a promising future strategy to accurately and effectively control and eradicate tumours. This review aims to evaluate the current state of the literature in the field of plasma oncology and highlight the potential for the use of LTPs in combination therapy. We also present novel data on the effect of LTPs on cancer stem cells, and speculatively outline how LTPs could circumvent treatment resistance encountered with existing therapeutics.

Keywords: Cancer stem cells; Combination therapy; Focal therapy; Low temperature plasma; Reactive species.

PubMed Disclaimer

Conflict of interest statement

Compliance with ethical standards Conflicts of interest None

Figures

Fig. 1
Fig. 1
Schematic representation of low temperature plasma formation and application. Gas flow is ignited by high voltage applied across ring electrodes. The core plasma propagates from the end of the tube and is applied into a bulk tumour, causing DNA damage through the formation of reactive oxygen and nitrogen species. Note: this diagram is not to scale; in the accompanying image, the dimensions of central quartz glass tube are 70 × 6 mm. Elements of this figure are modified from Hirst et al. [6]
Fig. 2
Fig. 2
An illustrative representation of the multi-phase transfer of plasma species towards a biological sample. The main components of the plasma phase, including ions, photons and neutral species, are shown, leading to the creation of various RONS across the plasma-liquid interface and their propagation towards and diffusion through an arbitrary tissue layer. In addition, approximate timescales governing various phenomena across the plasma-liquid phases and biological interaction are outlined
Fig. 3
Fig. 3
LTP induces DNA damage in cancer stem cells. Prostate cancer stem cells (SC), transit amplifying (TA) and committed basal (CB) cells were cultured and fractionated [106, 107] from a Gleason grade 9 metastatic tumour, and treated as described in Hirst et al. [17]. Statistical analysis of plasma treatments was calculated using Mann–Whitney test against untreated samples and showed P < 0.0001 significance, unless otherwise indicated (**P < 0.01, ****P < 0.0001)
Fig. 4
Fig. 4
Illustration of LTP treatment of a tumour. In the proposed approach, the LTP probe is inserted under needle guidance into the core of the tumour. The plasma is then ignited, creating short-lived reactive species (red dots) that induce DNA damage, necrosis and potentially electroporative effects to cells in the immediate vicinity. The diffusion of longer-lived species (blue dots) to the tumour periphery is shown, contributing to apoptotic and plasma-induced bystander effects. Proposed cellular effects and responses are estimated based on their proximity to the plasma source. Gas extraction is also indicated through a co-axial configuration in the LTP probe. Elements of this figure are adapted from Hirst et al. [17]

References

    1. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931–47. - PubMed
    1. Murakami T, Niemi K, Gans T, O’Connell D, Graham WG. Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities. Plasma Sources Sci Technol 2013; 22(1):015003.
    1. Stalder KR, McMillen DF, Woloszko J. Electrosurgical plasmas. J Phys D Appl Phys. 2005;38(11):1728–38.
    1. Butler-Manuel S, Lippiatt J, Madhuri TK. Interval debulking surgery following neo-adjuvant chemotherapy for stage IVB ovarian cancer using neutral argon plasma (PlasmaJet) Gynecol Oncol. 2014;135(3):622–3. - PubMed
    1. Woloszko J, Stalder KR, Brown IG. Plasma characteristics of repetitively-pulsed electrical discharges in saline solutions used for surgical procedures. IEEE Trans Plasma Sci. 2002;30(3):1376–83.