Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 18;12(2):e1005846.
doi: 10.1371/journal.pgen.1005846. eCollection 2016 Feb.

Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance

Affiliations

Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance

Rainer Roehe et al. PLoS Genet. .

Abstract

Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Distribution of methane emissions and archaea:bacteria ratios within breed type and diet.
The box plot shows the large variation and range of methane emissions (per day or per kg DMI = dry matter intake) and archaea:bacteria ratios within crossbred breed type (AA = Aberdeen Angus sired, LIM = Limousin sired) and diet (CON = concentrate based diet, FOR = forage based diet). The total number of animals in the 2 × 2 factorial design experiment was 68.
Fig 2
Fig 2. Host genetic effects on methane emissions and relative microbial abundance.
Host genetic effects were estimated by least squares means (± standard errors, different letters above bars indicate significant different estimates) of sire progeny groups (AA = Aberdeen Angus sired, LIM = Limousin sired) adjusted for diet, respiration chamber and randomized block effects. Relative microbial abundance was calculated as archaea:bacteria ratio.
Fig 3
Fig 3. Functional clusters of microbial genes identified using network analysis.
(A) Correlation analysis of microbial gene abundance was used to construct networks, where nodes represent microbial genes and edges the correlation in their abundance. Networks were clustered using the MCL algorithm and the profiles of clusters 1 to 6 are shown. Each chart represents the average abundance of genes in a cluster across the animals studied. Animals are ordered alternately being low (red bar beneath plot) and high methane emitter (yellow), whereby the first and last 4 bars represent animals offered concentrate (green) and forage (light blue) diets, respectively. See S2 Table for KEGG genes associated within each cluster. (B) Microbial gene networks of cluster 4 and 6 contained most of the microbial genes associated with methane metabolism; explicitly shown in yellow are the KEGG genes identified by the PLS analysis to be most closely associated with methane emissions (see Fig 4 and S3 Table).
Fig 4
Fig 4. Heatmap of the relative abundance of microbial genes associated with methane emissions as identified in the partial least squares analysis.
The relative abundance of microbial genes (blue = low to yellow = high) changed depending on methane emissions (g/kg DMI) for the animals selected for low and high methane emissions within breed type and diet. The labels on the horizontal axis indicate the crossbred breed type (AA = Aberdeen Angus sired, LIM = Limousin sired), diet (CON = concentrate based diet, FOR = forage based diet) and the amount of methane emissions (g/kg DMI).
Fig 5
Fig 5. Heatmap of the relative abundance of microbial genes associated with feed conversion efficiency as identified in the partial least squares analysis.
The relative abundance of microbial genes (blue = low to yellow = high) changed depending on feed conversion ratio (kg feed intake/kg growth) for the animals selected for low and high methane emissions within breed type and diet. The labels on the horizontal axis represent the breed type (AA = Aberdeen Angus sired, LIM = Limousin sired), diet (CON = concentrate based diet, FOR = forage based diet) and the feed conversion ratio (kg daily feed intake / kg daily growth).

References

    1. FAO. World Livestock 2011—Livestock in food security. FAO; Rome, Italy; 2011.
    1. IPCC. Climate Change 2014—Synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri RK, Meyer LA, editors. Geneva, Switzerland; 2014.
    1. Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, et al. SPECIAL TOPICS-Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci. 2013;91: 5045–5069. - PubMed
    1. Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995;73: 2483–2492. - PubMed
    1. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: The challenge of feeding 9 billion people. Science. 2010;327: 812–818. 10.1126/science.1185383 - DOI - PubMed

Publication types