2,3-Diphosphoglycerate Concentrations in Autologous Salvaged Versus Stored Red Blood Cells and in Surgical Patients After Transfusion
- PMID: 26891388
- PMCID: PMC4770563
- DOI: 10.1213/ANE.0000000000001071
2,3-Diphosphoglycerate Concentrations in Autologous Salvaged Versus Stored Red Blood Cells and in Surgical Patients After Transfusion
Abstract
Background: Stored red blood cells (RBCs) are deficient in 2,3-diphosphoglycerate (2,3-DPG), but it is unclear how autologous salvaged blood (ASB) compares with stored blood and how rapidly 2,3-DPG levels return to normal after transfusion. Therefore, we compared levels of 2,3-DPG in stored versus ASB RBCs and in patients' blood after transfusion.
Methods: Twenty-four patients undergoing multilevel spine fusion surgery were enrolled. We measured 2,3-DPG and the oxyhemoglobin dissociation curve (P50) in samples taken from the ASB and stored blood bags before transfusion and in blood samples drawn from patients before and after transfusion.
Results: The mean storage duration for stored RBCs was 24 ± 8 days. Compared with fresh RBCs, stored RBCs had decreased 2,3-DPG levels (by approximately 90%; P < 0.0001) and a decreased P50 (by approximately 30%; P < 0.0001). However, ASB RBCs did not exhibit these changes. The mean 2,3-DPG concentration decreased by approximately 20% (P < 0.05) in postoperative blood sampled from patients who received 1 to 3 stored RBC units and by approximately 30% (P < 0.01) in those who received ≥4 stored RBC units. 2,3-DPG was unchanged in patients who received no stored blood or ASB alone. After surgery, 2,3-DPG levels recovered gradually over 3 postoperative days in patients who received stored RBCs.
Conclusions: Stored RBCs, but not ASB RBCs, have decreased levels of 2,3-DPG and a left-shift in the oxyhemoglobin dissociation curve. Postoperatively, 2,3-DPG levels remain below preoperative baseline levels for up to 3 postoperative days in patients who receive stored RBCs but are unchanged in those who receive only ASB RBCs.
Figures
References
-
- Pelis K. Taking credit: the Canadian Army Medical Corps and the British conversion to blood transfusion in WWI. J Hist Med Allied Sci. 2001;56:238–77. - PubMed
-
- Hod EA, Zhang N, Sokol SA, Wojczyk BS, Francis RO, Ansaldi D, Francis KP, Della-Latta P, Whittier S, Sheth S, Hendrickson JE, Zimring JC, Brittenham GM, Spitalnik SL. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood. 2010;115:4284–92. - PMC - PubMed
-
- Manlhiot C, McCrindle BW, Menjak IB, Yoon H, Holtby HM, Brandao LR, Chan AK, Schwartz SM, Sivarajan VB, Crawford-Lean L, Foreman C, Caldarone CA, Van Arsdell GS, Gruenwald CE. Longer blood storage is associated with suboptimal outcomes in high-risk pediatric cardiac surgery. Ann Thorac Surg. 2012;93:1563–9. - PubMed
-
- Koch CG, Li L, Sessler DI, Figueroa P, Hoeltge GA, Mihaljevic T, Blackstone EH. Duration of red-cell storage and complications after cardiac surgery. N Eng J Med. 2008;358:1229–39. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
