Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar;122(3):818-824.
doi: 10.1213/ANE.0000000000001141.

Net Reclassification Improvement

Affiliations

Net Reclassification Improvement

Elizabeth S Jewell et al. Anesth Analg. 2016 Mar.

Abstract

When adding new markers to existing prediction models, it is necessary to evaluate the models to determine whether the additional markers are useful. The net reclassification improvement (NRI) has gained popularity in this role because of its simplicity, ease of estimation, and understandability. Although the NRI provides a single-number summary describing the improvement new markers bring to a model, it also has several potential disadvantages. Any improved classification by the new model is weighted equally, regardless of the direction of reclassification. In prediction models that already identify the high- and low-risk groups well, a positive NRI may not mean better classification of those with medium risk, where it could make the most difference. Also, overfitting, or otherwise misspecified training models, produce overly positive NRI results. Because of the unaccounted for uncertainty in the model coefficient estimation, investigators should rely on bootstrapped confidence intervals rather than on tests of significance. Keeping in mind the limitations and drawbacks, the NRI can be helpful when used correctly.

PubMed Disclaimer

References

    1. Maile MD, Engoren MC, Tremper KK, Tremper TT, Jewell ES, Kheterpal S. Variability of automated intraoperative ST segment values predicts postoperative troponin elevation. Anesth Analg. 2016;122:608–15
    1. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–72
    1. Pencina MJ, D’Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30:11–21
    1. Pepe MS, Janes H. Commentary: reporting standards are needed for evaluations of risk reclassification. Int J Epidemiol. 2011;40:1106–8
    1. Kerr KF, Wang Z, Janes H, McClelland RL, Psaty BM, Pepe MS. Net reclassification indices for evaluating risk prediction instruments: a critical review. Epidemiology. 2014;25:114–21

Publication types

LinkOut - more resources