Dosimetric effects of positioning shifts using 6D-frameless stereotactic Brainlab system in hypofractionated intracranial radiotherapy
- PMID: 26894336
- PMCID: PMC5690222
- DOI: 10.1120/jacmp.v17i1.5682
Dosimetric effects of positioning shifts using 6D-frameless stereotactic Brainlab system in hypofractionated intracranial radiotherapy
Abstract
Dosimetric consequences of positional shifts were studied using frameless Brainlab ExacTrac X-ray system for hypofractionated (3 or 5 fractions) intracranial stereo-tactic radiotherapy (SRT). SRT treatments of 17 patients with metastatic intracranial tumors using the stereotactic system were retrospectively investigated. The treatments were simulated in a treatment planning system by modifying planning parameters with a matrix conversion technique based on positional shifts for initial infrared (IR)-based setup (XC: X-ray correction) and post-correction (XV: X-ray verification). The simulation was implemented with (a) 3D translational shifts only and (b) 6D translational and rotational shifts for dosimetric effects of angular correction. Mean translations and rotations (± 1 SD) of 77 fractions based on the initial IR setup (XC) were 0.51 ± 0.86 mm (lateral), 0.30 ± 1.55 mm (longitudinal), and -1.63 ± 1.00 mm (vertical); -0.53° ± 0.56° (pitch), 0.42° ± 0.60° (roll), and 0.44°± 0.90° (yaw), respectively. These were -0.07 ± 0.24 mm, -0.07 ± 0.25 mm, 0.06± 0.21 mm, 0.04° ± 0.23°, 0.00° ± 0.30°, and -0.02° ± 0.22°, respectively, for the postcorrection (XV). Substantial degradation of the treatment plans was observed in D95 of PTV (2.6% ± 3.3%; simulated treatment versus treatment planning), Dmin of PTV (13.4% ± 11.6%), and Dmin of CTV (2.8% ± 3.8%, with the maximum error of 10.0%) from XC, while dosimetrically negligible changes (< 0.1%) were detected for both CTV and PTV from XV simulation. 3D angular correction significantly improved CTV dose coverage when the total angular shifts (|pitch| + |roll| + |yaw|) were greater than 2°. With the 6D stereoscopic X-ray verification imaging and frameless immobilization, submillimeter and subdegree accuracy is achieved with negligible dosimetric deviations. 3D angular correction is required when the angular deviation is substantial. A CTV-to-PTV safety margin of 2 mm is large enough to prevent deterioration of CTV coverage.
Figures
References
-
- Breneman JC, Steinmetz R, Smith A, Lamba M, Warnick RE. Frameless image‐guided intracranial stereotactic radiosurgery: clinical outcomes for brain metastases. Int J Radiat Oncol Biol Phys. 2009;74(3):702–06. - PubMed
-
- Cerviño LI, Detorie N, Taylor M, et al. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment. Pract Radiat Oncol. 2012;2(1):54–62. - PubMed
-
- Liaoa H‐I, Wangb C‐C, Weia K‐C, et al. Fractionated stereotactic radiosurgery using the Novalis system for the management of pituitary adenomas close to the optic apparatus. J Clin Neurosci. 2014;21(1):111–15. - PubMed
-
- Muacevic A, Kufeld M, Wowra B, Kreth FW, Tonn JC. Feasibility, safety, and outcome of frameless image‐guided robotic radiosurgery for brain metastases. J Neurooncol. 2010;97(2):267–74. - PubMed
-
- Murphy MJ. Intrafraction geometric uncertainties in frameless image‐guided radiosurgery. Int J Radiat Oncol Biol Phys. 2009;73(5):1364–68. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
