Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May:207:339-45.
doi: 10.1016/j.biortech.2016.01.106. Epub 2016 Feb 6.

Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems

Affiliations

Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems

Yun Hu et al. Bioresour Technol. 2016 May.

Abstract

Microbial nitrogen (N) removal pathways in planted (Canna indica L.) and unplanted integrated vertical-flow constructed wetland systems (IVCWs) were investigated. Results of, molecular biological and isotope pairing experiments showed that nitrifying, anammox, and denitrifying bacteria were distributed in both down-flow and up-flow columns of the IVCWs. Further, the N transforming bacteria in the planted IVCWs were significantly higher than that in the unplanted ones (p<0.05). Moreover, the potential nitrification, anammox, and denitrification rates were highest (18.90, 11.75, and 7.84nmolNg(-1)h(-1), respectively) in the down-flow column of the planted IVCWs. Significant correlations between these potential rates and the absolute abundance of N transformation genes further confirmed the existence of simultaneous nitrification, anammox, and denitrification (SNAD) processes in the IVCWs. The anammox process was the major N removal pathway (55.6-60.0%) in the IVCWs. The results will further our understanding of the microbial N removal mechanisms in IVCWs.

Keywords: Anammox; Integrated vertical-flow constructed wetland; Isotope pairing technique; Nitrogen removal pathway; Nitrogen transformation functional gene.

PubMed Disclaimer

Publication types

LinkOut - more resources