Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 27;428(6):1356-1364.
doi: 10.1016/j.jmb.2016.02.014. Epub 2016 Feb 18.

Trigger Factor Reduces the Force Exerted on the Nascent Chain by a Cotranslationally Folding Protein

Affiliations

Trigger Factor Reduces the Force Exerted on the Nascent Chain by a Cotranslationally Folding Protein

Ola B Nilsson et al. J Mol Biol. .

Abstract

Cotranslational protein folding can generate pulling forces on the nascent chain that can affect the instantaneous translation rate and thereby possibly feed back on the folding process. Such feedback would represent a new way of coupling translation and folding, different from coupling based on, for example, codon usage. However, to date, we have carried out the experiments used to measure pulling forces generated by cotranslational protein folding either in reconstituted in vitro translation systems lacking chaperones, in ill-defined cell lysates, or in vivo; hence, the effects of chaperones on force generation by folding are unknown. Here, we have studied the cotranslational folding of dihydrofolate reductase (DHFR) in the absence and in the presence of the chaperones trigger factor (TF) and GroEL/ES. DHFR was tethered to the ribosome via a C-terminal linker of varying length, ending with the SecM translational arrest peptide that serves as an intrinsic force sensor reporting on the force generated on the nascent chain when DHFR folds. We find that DHFR folds into its native structure only when it has emerged fully outside the ribosome and that TF and GroEL alone substantially reduces the force generated on the nascent chain by the folding of DHFR, while GroEL/ES has no effect. TF therefore weakens the possible coupling between cotranslational folding and translation.

Keywords: GroEL/ES; arrest peptide; chaperone; protein folding; trigger factor.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources