Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2016 Jul;9(7):528-33.
doi: 10.1158/1940-6207.CAPR-15-0276. Epub 2016 Feb 23.

Clinical Study of Ursodeoxycholic Acid in Barrett's Esophagus Patients

Affiliations
Clinical Trial

Clinical Study of Ursodeoxycholic Acid in Barrett's Esophagus Patients

Bhaskar Banerjee et al. Cancer Prev Res (Phila). 2016 Jul.

Abstract

Prior research strongly implicates gastric acid and bile acids, two major components of the gastroesophageal refluxate, in the development of Barrett's esophagus and its pathogenesis. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has been shown to protect esophageal cells against oxidative stress induced by cytotoxic bile acids. We conducted a pilot clinical study to evaluate the clinical activity of UDCA in patients with Barrett's esophagus. Twenty-nine patients with Barrett's esophagus received UDCA treatment at a daily dose of 13 to 15 mg/kg/day for 6 months. The clinical activity of UDCA was assessed by evaluating changes in gastric bile acid composition and markers of oxidative DNA damage (8-hydroxydeoxyguanosine), cell proliferation (Ki67), and apoptosis (cleaved caspase-3) in Barrett's esophagus epithelium. The bile acid concentrations in gastric fluid were measured by liquid chromatography/mass spectrometry. At baseline, UDCA (sum of unchanged and glycine/taurine conjugates) accounted for 18.2% of total gastric bile acids. After UDCA intervention, UDCA increased significantly to account for 93.4% of total gastric bile acids (P < 0.0001). The expression of markers of oxidative DNA damage, cell proliferation, and apoptosis was assessed in the Barrett's esophagus biopsies by IHC. The selected tissue biomarkers were unchanged after 6 months of UDCA intervention. We conclude that high-dose UDCA supplementation for 6 months resulted in favorable changes in gastric bile acid composition but did not modulate selected markers of oxidative DNA damage, cell proliferation, and apoptosis in the Barrett's esophagus epithelium. Cancer Prev Res; 9(7); 528-33. ©2016 AACRSee related article by Brian J. Reid, p. 512.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: The authors have no Conflict of Interest to disclose.

Comment in

References

    1. DeMeester SR. Management of Barrett’s esophagus free of dysplasia. Semin Thorac Cardiovasc Surg. 1997;9:279–284. - PubMed
    1. Drewitz DJ, Sampliner RE, Garewal HS. The incidence of adenocarcinoma in Barrett’s esophagus: a prospective study of 170 patients followed 4. 8 years. Am J Gastroenterol. 1997;92:212–215. - PubMed
    1. Nehra D, Howell P, Williams CP, Pye JK, Beynon J. Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut. 1999;44:598–602. - PMC - PubMed
    1. Iftikhar SY, Ledingham S, Steele RJ, Evans DF, Lendrum K, Atkinson M, et al. Bile reflux in columnar-lined Barrett’s oesophagus. Ann R Coll Surg Engl. 1993;75:411–416. - PMC - PubMed
    1. Vaezi MF, Richter JE. Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology. 1996;111:1192–1199. - PubMed

Publication types